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The bottle is a Trader Joe’s Chile Lime TouchScribe:
Seasoning Blend with a bright red label It has 0 calories
and bold white and green lettering that per serving.

reads “Just the right amount of salt and
heat — Net Wt. 2.9 oz (82g)” -

@ When holding similar objects, users get comparisons

#4 color label B 45 text label 7 Your left hand holds a red bottle, and

as finger moves N | | reads from top to bottom your right hand holds a green one.

white TRADER JOE’S CHILE LIME \ #6 visual comparison

red SEASONING BLEND .\ Similarities: Both are Trader Joe's

red JUST THE RIGHT AMOUNT seasonings in clear glass bottles...

green OF SALT AND HEAT Differences: In your left hand, the
Chile Lime bottle is red with bold text,

NET WT. 2.9 OZ (82g)

while in your right hand, the Oregano
bottle is green with smaller text.

Figure 1: TouchScribe augments hand-object interactions with live visual descriptions. (a) BLV users use TouchScribe to explore
objects placed on the shared kitchen counter. (b) While holding an object, BLV users receive hierarchical descriptions, starting
with the hand state, followed by a brief summary, and then detailed descriptions. (c) They can also ask TouchScribe for
visual information using speech. (d) Through finger gestures, users can access object details; for example, holding the object
and pointing with the other hand reads its color; (e) holding and swiping up reads the text. (f) When holding two objects
simultaneously, users receive a visual comparison highlighting their similarities and differences.

Abstract

People who are blind or have low vision regularly use their hands
to interact with the physical world to gain access to objects’ shape,
size, weight, and texture. However, many rich visual features remain
inaccessible through touch alone, making it difficult to distinguish
similar objects, interpret visual affordances, and form a complete
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understanding of objects. In this work, we present TouchScribe,
a system that augments hand-object interactions with automated
live visual descriptions. We trained a custom egocentric hand in-
teraction model to recognize both common gestures (e.g., grab to
inspect, hold side-by-side to compare) and unique ones by blind
people (e.g., point to explore color, or swipe to read available texts).
Furthermore, TouchScribe provides real-time and adaptive feedback
based on hand movement, from hand interaction states, to object
labels, and to visual details. Our user study and technical evalua-
tions demonstrate that TouchScribe can provide rich and useful
descriptions to support object understanding. Finally, we discuss
the implications of making live visual descriptions responsive to
users’ physical reach.
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1 Introduction

People who are blind or have low vision (BLV) often rely on touch
to explore and interact with the physical world, using their hands to
perceive essential attributes of objects such as shape, size, weight,
and texture [67, 99, 100]. However, many rich visual features re-
main inaccessible through touch alone, making it difficult to fully
understand an object’s appearance and functionality. For example,
it is difficult to distinguish between grocery store products with sim-
ilar shapes but different colors, patterns, or surface details without
visual cues [60, 63]. Certain visual affordances, such as identically
shaped seasoning bottles from different brands, similar tea bags
with or without caffeine, or small printed ingredient labels, may be
entirely imperceptible through touch.

Currently, BLV individuals can capture photos and engage in con-
versations with Al systems to obtain visual descriptions [7, 13, 18],
or receive live narration to explore their surroundings [4, 34]. How-
ever, these Al systems often struggle to accurately identify the
specific object of interest within an image (as noted in [62, 65]),
generate long-form descriptions that contain unnecessary informa-
tion, and their turn-taking interaction style can impede the quick
retrieval of desired visual information. In contrast, hands provide
a natural and intuitive interface for interacting with the physical
world [61, 62, 64, 65]. Their movements are indicative of a person’s
intent [32] and objects of interest [33, 111], making them integral
to how BLV individuals access and understand their environment
through tactile exploration [41, 109]. Hence, in this paper, we inves-
tigate the question: How can natural hand interactions be leveraged
to support BLV people to access rich visual information about objects
of interest?

To address this question, we introduce TouchScribe, a system
that provides live visual descriptions driven by hand-object interac-
tions. TouchScribe supports a set of hand gestures inspired by prior
research on discreet gestures preferred by BLV individuals [80, 81],
such as pointing to an object held in the other hand to read its
color [75, 89] or swiping across it to access available text (Figure 1d,
e). TouchScribe also incorporates common gestures used with sight,
such as touching or holding objects to signal interest (Figure 1b),
and comparing two items side-by-side to explore visual similarities
or differences (Figure 1f). Based on different hand interactions with
objects, TouchScribe provides hierarchical feedback, including hand
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states for users to confirm that hand events are correctly identified,
a brief object overview, and rich visual details (Figure 1b).

TouchScribe was prototyped using a neck mount with an at-
tached smartphone (Figure 4). It detects fine-grained hand-object
interactions, such as when both hands engage the same or different
objects, or when an object is flipped, to deliver adaptive feedback
that aligns with the user’s evolving focus and intent. To support
these hand-object interactions, we fine-tuned a custom egocentric
hand gesture recognition model that interprets different hand ges-
tures as information cursors to identify objects or information of
interest. The underlying gesture recognition model is lightweight
enough to run on live video feeds, and the wide camera field of view
(FoV) provides broad coverage, though at the cost of accuracy due to
inherent model limitations and distortion from the wide-angle lens.
TouchScribe addresses these by integrating smoothing algorithms
to mitigate intermittent recognition and extract keyframes. It also
supports visual question answering (VQA), enabling users to freely
query visual details when needed (Figure 1c).

We conducted a study with eight BLV participants to collect both
qualitative and quantitative data, aiming to understand their experi-
ences with using TouchScribe across various object-understanding
tasks in our lab-controlled environment, and to evaluate the accu-
racy and latency of descriptions. Through qualitative analysis, we
found that participants generally perceived TouchScribe interac-
tions as intuitive (M=5.63 out of 7), with the provided descriptions
being accurate (M=5.5) and comprehensive (M=6.5). Participants
also felt a sense of control in the descriptions for object understand-
ing (M=5.13). However, participants reported moderate cognitive
effort (as measured by NASA-TLX) and a noticeable learning curve
in hand positioning and gesture recognition with camera-enabled
assistive technologies (ATs). Also, through our technical evaluation,
we reported quantitative results to reflect TouchScribe’s perfor-
mance in our user study, including the accuracy of our custom
hand posture recognition model in the live stream (F; = 0.77), the
latency between detected hand movements and different types of
descriptions (from 0.56s to 14s), and the accuracy of the descriptions
(from 67.83% to 93.27%).

Through the study, we identified several gaps in the current
TouchScribe prototype that limit its practical use. For example,
while the wide camera FoV offered broader coverage, it also intro-
duced inaccuracies due to image distortion. In addition, interpreting
the intent behind diverse natural hand—-object interactions remained
challenging, and at times the system produced information over-
load during rapid hand gesture changes. Based on these findings,
we discuss the implications to make TouchScribe generalizable for
broader real-world situations in the future, such as customizations
to different gesture preferences, integrating haptic-audio feedback
for camera aiming, leveraging other gesture and object recognition
techniques to improve accuracy, and making live visual descriptions
responsive to users’ further physical reach.

In summary, our work contributes:

(i) TouchScribe, a novel prototype system that generates live,
rich object descriptions based on multiple hand-object inter-
actions, moving beyond the single interaction and informa-
tion types supported in earlier systems (Table 1).
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Table 1: Overview of research and commercial apps for providing live visual descriptions leveraging different information

cursors for real-world understanding.

Assistive System Cursor Type Information Type
Orcam [16], FingerReader [30], . .

VizLens [43] and StateLens [44] Finger tip Text

Medeiros et al. [75] . . .

Stearns et al. [89] Finger tip Clothing color and texture
EyeRing [78] Finger tip Barcode, currency

SeeingAlI [18] Camera motion

Human, currency, barcode, object, color,
lightness, and text

WorldScribe [34] Camera motion

Object labels, general and detailed descriptions

TouchScribe (this work)

Hands and fingers

Hand states, color, text, brief and detailed
object descriptions, and object comparison

(ii) A user study and technical evaluation demonstrating the
intuitiveness of TouchScribe, usefulness of its descriptions,
and its overall user experience.

(iii) Lessons learned from the development and evaluation of
TouchScribe, and design implications for employing egocen-
tric camera-enabled, real-time assistive technologies in the
real world.

2 Related Work

Our work builds upon and connects three key research domains.
First, prior research on hand-based interactions has shown that the
expressive and intentional nature of hands provides a compelling
alternative to device-based input (e.g., controllers) though user pref-
erences vary depending on different contexts, which informed our
selection of gestures in TouchScribe. Second, studies on the use
and limitations of hand interactions in current ATs for accessing
real-world information revealed opportunities for TouchScribe to
incorporate more expressive hand—object interactions and deliver
richer visual information. Third, advances in vision-language mod-
els (VLMs) have demonstrated their potential to enhance access
to visual content without human assistance; however, they remain
limited in usability and in providing live object descriptions driven
by hand-object interactions. This motivated our approach of using
hands as information cursors to proactively deliver essential visual
information beyond the repetitive speech prompts of current Al-
enabled ATs. Below, we discuss insights from these domains that

shaped the design of TouchScribe.

2.1 Hand Interactions as Intent Cues

Hands provide a natural and intuitive interface for interacting with
the physical world, effectively conveying users’ intentions [32],
actions [72], and objects or areas of interest [33, 111]. Hand ges-
tures are highly expressive and support a wide range of tasks for
the general population, including animation creation and author-
ing [28, 70, 85, 110], mode switching [91], typing [56, 105], and
object manipulation [51, 58, 66, 76, 82, 97, 106]. Beyond visual in-
teractions, hands also play a crucial role in nonvisual exploration.
For BLV individuals, tactile exploration strategies vary widely and
include bimanual, unimanual, and alternating approaches [98, 109],
which demonstrated the adaptability of hand use strategies to dif-
ferent information needs. However, when considering the social ac-
ceptability of hand interactions, on-body gestures performed within
the hands, such as tapping or swiping a finger across one’s opposite

palm, are generally preferred. Unlike bodily gestures (e.g., making
an 'OK’ sign, waving) [37], these gestures are more discreet, socially
acceptable, and feel natural in everyday contexts, such as quickly
checking for new messages while commuting [80, 81]. Drawing
from these works, in TouchScribe, we also considered unique and
usable hand interactions for accessing information.

2.2 Current Use of Hand Interactions for
Assistive Technologies

Hand-based interactions have been explored in both commercial
ATs and prior research. For instance, BLV individuals commonly
access digital information through touch gestures on smartphones.
Swipe gestures, for example, enable screen navigation, such as swip-
ing left or right for word-by-word reading, or using a two-finger
swipe up in screen readers like TalkBack [10] or VoiceOver [19] to
read from the top of the screen. While these methods are effective in
digital contexts, comparable approaches for accessing information
of physical objects remain limited, often requiring photo capture
followed by a question-answering process. Though tactile explo-
ration can support object understanding [41, 109], many rich visual
features, such as labeled texts, colors, or intricate patterns, remain
inaccessible through touch alone.

To bridge this gap, prior research has explored using the hands
and fingers as information cursors to access visual information in
real-time [45]. For instance, prior systems, such as VizLens [43],
StateLens [44], and FetchAid [42], support interactions with ap-
pliance control panels by allowing users to point to interface ele-
ments that are subsequently read aloud. Finger-mounted camera
systems have been explored as a means of supporting BLV users
in accessing visual details, including text [30, 40, 86, 88], currency
and barcodes [78], and clothing color and texture, while maintain-
ing tactile feedback for hands-on exploration [75, 89]. Building on
this direction, Lee et al. [61, 62, 64, 65] proposed custom models
that leverage hand position to localize objects of interest for more
effective intent disambiguation and camera alignment.

Despite these advances, existing systems (Table 1) often rely on
a limited set of gestures and hand-held devices for photo capturing,
and provide only single or limited forms of visual feedback (e.g.,
text, color). In contrast, enabled by an integrated hand recognition
and description generation pipeline, TouchScribe offers a fluid,
hands-free, and integrated experience by delivering live, rich object
descriptions driven by hand-object interactions. For instance, BLV
users can hold or touch an object with one hand to obtain rich visual
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details, point the object with another to read colors, or perform
a swipe-up gesture to access its available texts. Such natural and
expressive information access was lacking in prior systems.

2.3 Visual Descriptions with VLMs

Beyond relying on remote sighted assistance [1, 2] or crowdsourc-
ing [29, 92], where human agents may not always be available,
recent advancements in VLMs have enabled applications that allow
BLV individuals to easily submit image-description queries to Al-
powered VQA systems [3, 7, 13, 59, 102] or receive real-time visual
descriptions from live video Al systems [4, 34]. These technolo-
gies promote the independence and autonomy of BLV individuals
without requiring sighted assistance. We discuss them below.

2.3.1 Image Capture and Visual Question Answering. Current Al-
powered visual description systems require users to capture photos
and engage in dialogue with Al assistants to obtain specific visual
details [3, 7, 13, 59, 102]. This process of photo capturing and turn-
taking can be laborious and time-consuming. For example, taking
pictures demands precise camera alignment to ensure the object
of interest is within the frame [22, 29, 53, 54, 93], often involving
repeated trial and error. Although cameras with a wider FoV may
help mitigate this issue [49], users must still explicitly specify their
needs and interact with the Al to obtain desired details. This turn-
taking VQA process is further challenged by the dynamic nature of
the real world, where generated descriptions can quickly become
outdated as the environment changes.

2.3.2 Live Video Feed and Generative Descriptions. Building on
photo-taking, ChatGPT’s Advanced Voice with Video [4] enables a
conversational approach to retrieving visual information through a
live video feed. However, instead of proactively delivering essential
details, it depends on continuous speech prompts from the user [35],
which may introduce turn-taking delays, increase effort, and raise
concerns about privacy and social acceptability. To overcome this
lack of proactivity, WorldScribe [34] provides live visual descrip-
tions that dynamically adapt to camera motion and the captured
visual content. For example, WorldScribe [34] enhanced users’ envi-
ronmental awareness by providing brief object labels as the camera
panned across the surroundings, and offered richer visual details
when the camera focused on a specific scene. In contrast to envi-
ronmental understanding, our work explores using hand gestures
as information cursors to proactively describe objects based on
how the user is interacting with them, enabling more responsive,
intuitive, and fine-grained object understanding in real time.

3 TouchScribe

TouchScribe is a system that provides live, rich object descriptions
based on the user’s hand interactions with physical objects. It de-
tects three types of hand gestures and identifies hand activities in
each frame (Hand Gesture Recognition Layer in Section 3.4). Then,
TouchScribe extracts keyframes from live video stream based on
these hand activities (Keyframe Extraction Layer in Section 3.5) to
generate multiple forms of feedback, including hand states, object
color, available texts, and brief and detailed object descriptions, and
object comparisons (Description Generation Layer in Section 3.6).
We describe our design goals and implementation details below.
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Figure 2: Overview of the variety of gestures, timings to ex-
tract keyframes, and description types supported by Touch-
Scribe.

3.1 Design Goals

TouchScribe is designed based on three primary goals inspired by
prior work:

G1 - Supporting common and usable gestures. Hand inter-
actions serve as valuable intent cues for disambiguating objects
of interest [61, 62, 64, 65] and indicating the locations of relevant
information (e.g., text [42-44] or color [75, 89]). However, because
hand-object interactions vary across individuals and contexts [109],
as an initial step, TouchScribe should demonstrate a set of common
and usable gesture types for BLV individuals.

G2 - Supporting proactive and real-time feedback. Given
the current strengths and limitations of photo-capturing and VQA-
based approaches [35, 101], which provide access to specific in-
formation but introduce delays and turn-taking overhead, Touch-
Scribe should primarily emphasize proactive feedback while still
supporting VQA when needed. Moreover, TouchScribe’s descrip-
tions should be closely synchronized with hand interactions, min-
imizing latency between touch and audio output to enhance the
overall user experience.

G3 - Conveying system-perceived states of hand-object
interactions. Given that camera aiming has long posed challenges
for BLV users [22, 29, 53, 93], it is essential to clearly communicate
whether the system has detected users’ hands and what it has
recognized, enabling users to take appropriate follow-up actions.

3.2 Gestures to Access Visual Information

To fulfill G1, TouchScribe supports six gestures (Figure 2a), cate-
gorized along two dimensions: (i) familiarity, gestures that are
common versus those unique to BLV users, and (ii) gesture na-
ture, gestures that are continuous versus discrete. These gestures
are informed by prior research on commonly used assistive tech-
nologies or discreet on-body gestures [80, 81]. Each gesture maps to
a distinct prompt for VLMs to generate corresponding descriptions
(Details are in Section 3.6).

(1) Hold an object with a single hand (common & continuous)
- Holding an object of interest is a common practice for exam-
ining its visual or tactile details, such as reading nutritional
information on a bottle or exploring its shape.

(2) Touch an object with a single hand (common & continu-
ous) — Touching an object with a few fingers is common for
indicating an object of interest in sighted interaction [111], and
is also widely used in tactile exploration by BLV people [109].
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(3) Hold or touch explore an object with both hands (unique
& continuous) — Using both hands to explore objects through
touch is a common tactile exploration pattern among BLV in-
dividuals, particularly when interacting with flat or textured
surfaces such as tactile graphics [41, 109].

(4) Hold or touch objects side-by-side with both hands (com-
mon & discrete) - When comparing similar items, such as
ingredient labels on two bottles or subtle shape differences be-
tween boxes, people often place or hold them side by side to
facilitate comparison.

(5) Hold an object in one hand and point with another hand
to reveal visual details (unique & discrete) - Pointing ges-
tures are common for BLV people to access specific informa-
tion, such as color [89], text [30, 40, 43, 44, 86—-88], or tex-
ture [89, 104].
Hold an object in one hand and two-finger swipe up with
another hand to read texts. (unique & discrete) Two-finger
swipe-up gestures are commonly used in screen readers such
as i0S VoiceOver [19] and Android TalkBack [10] to read on-
screen text from top to bottom. Because the exact locations of
text are often unknown to BLV people, we adapt this gesture
to enable access to available text on an object.

G

~

3.3 Implementation Details

To enable TouchScribe to provide real-time feedback (G2), we trade
off different factors to maximize the computing speed while main-
taining decent accuracy (See Section 6), such as the choices of the
models, or the frame size. TouchScribe servers include a local server
running on a MacBook M4 Max and a remote server with two em-
bedded Nvidia GeForce RTX 4090 GPUs. TouchScribe uses a neck
mount with an attached iPhone 13 Pro (Figure 4). The smartphone
offers more APIs than emerging smart glasses at the time of de-
velopment, and greater flexibility in selecting frame resolution for
real-time use and camera FoV for coverage. The TouchScribe i0S
app uses the wide lens, the 13 mm-equivalent rear camera with an
approximately 120° FoV, whereas the standard wide lens (26 mm-
equivalent) offers a 77° FoV. It streamed the video frames (width:
720, height: 960, configured to retain approximately 70% image
quality) to the local server through a Socket connection. Google Me-
diaPipe [9], the hand gesture recognition model and finger motion
classification model, runs on the local server and achieves around 6
frames per second (FPS). Other models that require higher compu-
tational resources run on the remote server, including Hands23 [36]
for detecting hand—-object contacts (F;-score=79.1), SigLIP [107] for
generating image embeddings, and Moondream [15] for producing
brief object descriptions.

3.4 Hand Gesture Recognition Layer

In this layer, TouchScribe aims to recognize the aforementioned
hand gestures in a lightweight manner to support real-time perfor-
mance alongside other models for live visual descriptions (G2). To
achieve this, we fine-tune a hand gesture classification model and
a finger motion classification model, which identify gestures and
finger movements based on hand landmarks detected using Google
MediaPipe [9]. We describe these models in detail below.
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3.4.1 Hand gesture classification model. We fine-tuned a publicly
available keypoint classification model [12] to adapt its model struc-
ture for our supported gesture set. The model takes a 2D keypoint
vector as input and outputs a hand gesture class. Specifically, the
input vector has a dimensionality of 42 corresponding to the (x, y)
coordinates of 21 hand keypoints extracted from Google Medi-
aPipe [9]. The output includes three gesture categories, touch, hold,
and point, for each hand. Additionally, a gesture is labeled as out of
view when no hand keypoints are detected by Google MediaPipe [9].
This results in a total of four classes for each hand.

3.4.2  Finger motion classification model. To support the two-finger
swipe-up gesture described in Section 3.2, we fine-tuned a finger
motion classification model from the same publicly available reposi-
tory [12]. The model takes as input a time-series history of a finger-
tip’s 2D coordinates (x,y), sampled every 16 frames and resulting
in a flattened input vector of size 32. The output includes three
finger motion gesture categories, including static, up, and down.
This model is executed only when one hand is in the hold state and
the other is in the fouch state, with both the index finger and thumb
of the touch hand located within the bounding box of the hold hand
(Figure 3e).

3.5 Keyframe and Object Extraction Layer

In this layer, TouchScribe identifies keyframes when users per-
form new gestures or flip an object, signaling the need for updated
descriptions (G3). A key challenge arises from the intermittent
predictions produced by the gesture recognition models due to
real-time performance requirements (G2), which may reduce accu-
racy and lead to false positives. To mitigate this issue, TouchScribe
applies a temporal smoothing function that analyzes consecutive
frames to infer a stable gesture state for each hand.

First, TouchScribe verifies whether the past x gestures of either
hand consist of a single gesture class repeated at least t times (e.g.,
hold, touch, point, or out of view). If this condition is satisfied, that
gesture is assigned as the stable gesture state. Otherwise, Touch-
Scribe checks whether the previous stable gesture state appears
within the last n frames and retains it if so. If neither condition
holds, the most frequent gesture in the last n frames is selected as
the current gesture. Based on our apparatus and empirical tests,
we set x = 12, n = 6, and t = 4. Whenever the stable gesture
state transitions to either hold or touch, the corresponding frame
is marked as a keyframe and sent to the Hands23 [36] model to
identify hand-object contact details, supplementing prompt data
for the description generation pipeline (Figure 3b).

In addition, when the stable gesture of either hand remains as
hold or touch across keyframes, TouchScribe analyzes whether
the object is unchanged by periodically cropping the object image
and computing the cosine similarity between the current image
embedding and those from the previous s samples (Figure 3f). If
the similarity scores with all s prior samples fall below a threshold
u, the frame is marked as a keyframe, which indicates a potential
change or flip of the object. Based on our apparatus and empirical
tests, we set s = 4 and u = 0.85.

The extracted keyframes and objects are passed to VLMs to
generate hierarchical feedback and descriptions. The structure of
these prompts and outputs is detailed in the following section.
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Figure 3: TouchScribe System Diagram. (a) TouchScribe performs gesture recognition on live video streams. For each camera
frame, hand landmarks are extracted with Google MediaPipe [9] and classified into predefined gesture categories. A temporal
smoothing module then aggregates multiple frames to produce stable keyframes and gesture states. (b) For each keyframe,
Hands23 [36] infers object contact. The contact data, together with a cropped image of the object, is passed to VLMs for further
processing. (c) VLMs, including Moondream [15] and GPT-40 [11], are executed in parallel to generate rich object descriptions.
(d) When one stable state is hold and the other is point, TouchScribe reads the color of the small region the finger is pointing to.
(e) When one stable state is hold and the other is touch, TouchScribe tracks finger motion and reads the text once both fingers
move up. (f) TouchScribe also maintains a history of cropped objects and identifies flipped instances by comparing image
similarity, and re-runs the generation pipeline on the updated crop.

3.6 Description Generation Layer

In this layer, TouchScribe generates descriptions with adaptive lev-
els of detail based on the user’s hand-object interactions. To achieve
this, TouchScribeintegrates outputs from multiple components, in-
cluding gesture states from the hand gesture recognition mod-
els, hand-object contact information inferred by the Hands23 [36]
model, and the extracted keyframes and objects. TouchScribe dy-
namically incorporates these details to construct descriptions or
prompts for VLMs to generate rich object details. We detail each
type of description and its generation process below.

Hand-State Feedback. Hand-state feedback helps users assess
whether the hands are correctly captured and identified (G3). When-
ever the user’s hands are detected within the camera view, Touch-
Scribe generates feedback such as “I see your {which_hand} hand”
to help users confirm the presence of their hands in the frame,
where “{which_hand}" is dynamically assigned as left, right or both.
Then, TouchScribe describes the perceived stable gesture states,
for example: “Your {which_hand} hand is/are {gesture}ing” or “You
flipped or changed the object.”, where “{gesture}" is dynamically
assigned based on the recognized stable gesture state, including
hold, touch and point. The two feedback are combined when they
are temporally close to reduce repetition, such as “| see your right
hand is pointing.”

Brief Object Descriptions. The brief description helps users
quickly assess what the object is, whether it is of interest, and
whether they want to learn more. Given a keyframe, TouchScribe
first applies the Hands23 model [36] to obtain hand-object contact
information, including which hand (or both) is in contact and a

cropped image of the object (Figure 3b). When contact is detected,
TouchScribe generates prompts such as “What is my {which_hand}
hand touching?” with a cropped object image. This prompt is then
passed to Moondream [15], a lightweight VLM that produces con-
cise descriptions with low latency. Example outputs include “Your
right hand is touching a bottle of seasoning.” and “Both your hands
are touching a laptop.”

Detailed Object Descriptions. Detailed descriptions enable
users to access fine-grained visual information about objects. Using
the same cropped object image and hand-object contact data pro-
vided to Moondream [15], TouchScribe also supplies these inputs
to GPT-40 [11] with a different prompt: “Can you describe the ob-
ject | am {gesture}ing with my {which_hand} hand in detail?” This
produces descriptions such as “You are holding a white mug deco-
rated with colorful illustrations...” Although Moondream [15] and
GPT-40 [11] perform inference in parallel, Moondream generates
an initial high-level description first, followed by GPT-40’s more
detailed output due to differences in latency.

Available Object Texts. TouchScribe reads aloud the available
text on the object (e.g., expiration date, nutrition facts) once the user
performs the hold+swipe-up gesture. Using the same cropped object
image, TouchScribe submits a different prompt to GPT-40 [11]: "I
am holding the object with my {which_hand} hand. Please describe
the text line by line. If there is no text, can you just return 'no text
on the {object name} your {which_hand} hand is {gesture}ing.” We
employ GPT-4o0 [11] for its acceptable latency and accuracy of
text recognition on low-resolution images compared to other text
recognition models. This approach enables top-to-bottom reading
of text on object surfaces, analogous to screen readers such as
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iOS VoiceOver [19] and Android TalkBack [10]. If users trigger
the gesture before texts are generated, TouchScribe responds: “Still
processing the text, please try again later.”

Comparative Descriptions. This feedback aims to support com-
parisons between objects with similar tactile features (e.g., shape
and size), enabling users to better understand their visual simi-
larities and differences. When both hands hold or touch different
objects, TouchScribe crops the corresponding object images using
the Hands23 model [36] and prompts GPT-40 [11]: “Can you describe
the object | am holding with my left hand and the one with my right
hand? What are the differences or similarities between them?” This
yields outputs, such as “Your left hand holds a red bottle, and your
right hand holds a green one. Similarities: Both are Trader Joe's... Dif-
ferences: color and texts are different ..."” Also, TouchScribe detects
when both hands hold or touch different parts of the same object,
supporting users in understanding the object’s spatial layout and
visual characteristics (e.g., surface graphics and text), building on
prior work [41, 109]. In this case, TouchScribe prompts GPT-40 [11]
with full image and instructions: “Can you describe the spatial and vi-
sual relationship between the points | am touching, and highlight any
visual similarities or differences between them?” Example outputs in-
clude “Your hands touch adjacent areas around the bottle, with the
left spanning the text... and the right spanning the graphics...”

Color Labels. TouchScribe reports an object’s color when users
hold it with one hand and point to it with the other. Then, Touch-
Scribe analyzes a small image region near the index fingertip. Based
on the fingertip coordinates and hand side (1eft or right), the sys-
tem slightly offsets the cropped region (left/up for the right hand
and right/up for the left hand) to exclude the finger itself. It then
computes the region’s average RGB value and maps it to the nearest
named color using the webcolors library [20].

User Query. Lastly, in line with G2, TouchScribe enables users
to invoke a question-answering function via the voice command
“Hey <wake word>" and pose queries. TouchScribe then submits the
current video frame along with the user’s question to GPT-40 [11]
and reads the generated response, similar to existing Al-enabled
assistive VQA services such as BeMyAI [13] and SeeingAlI [18].

3.7 Handling Responsiveness of Descriptions to
Hand Interactions and Speech Query

TouchScribe prioritizes descriptions and interrupts based on differ-
ent hand-object gestures. For example, invoking the VQA function
interrupts any ongoing narration to address the query, after which
hand gestures are ignored until the answer is fully delivered. In
contrast, discrete gestures for specific visual information, such as
hold+point for color labels or hold+swipe-up for object text, can also
interrupt ongoing descriptions.

4 Evaluation Methods

We conducted a user study to qualitatively understand How do
BLV participants experience and perceive TouchScribe? We
then used the captured videos and interaction data from the study to
conduct a technical evaluation for quantitative insights into What
is the accuracy and latency of TouchScribe’s descriptions,
in response to users’ hand-object interactions? We detail our
methods and results below.
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Figure 4: The TouchScribe prototype setup included an ad-
justable neck mount with an attached smartphone. During
the study, researchers adjusted the mount for each partici-
pant to ensure the camera was properly aimed at the table.

4.1 Participants

We recruited eight BLV participants (3 Male and 5 Female) using
email lists for local accessibility organizations, prior contacts, and
snowball sampling. Participants aged from 18 to 72 (Avg. 45.5) and
described their visual impairment as blind (N=6) or having low
vision (N=2). Most participants had prior experiences using remote
sighted assistance and Al-enabled services, such as Orcam [16],
BeMyEyes [2], BeMyAI [13], Aira [1], or SeeingAlI [18] in their
daily lives (Table 3).

4.2 Procedure, Apparatus and Tasks

The study consisted of two sessions: (i) a practice session, designed to
familiarize participants with TouchScribe, and (ii) a task session, dur-
ing which participants completed a series of object understanding
and selection tasks. Throughout the study, participants remained
seated and interacted with the system using a neck-mounted smart-
phone (Figure 4).

(i) Practice session. Participants were introduced to the hand
gestures supported by TouchScribe, the corresponding feedback
and descriptions provided by the system, and the procedure for
invoking the VQA function.

(ii) Task session. During the task session, participants com-
pleted four object understanding and selection tasks with increas-
ing levels of complexity, determined by the number of objects and
the specificity of required information [35]. We describe each task
below.

(1) Understanding an object: Participants were given a cup
featuring text and graphics on its surface (Table 2). The cup
was placed on a table, and participants were instructed to
use TouchScribe to obtain descriptions to understand its
visual features. The task concluded when participants felt
they had sufficiently understood the cup’s visual character-
istics and reported their observations to the experimenter.
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Table 2: Setup and instructions for each scenario. These scenarios differed based on factors such as Visual Complexity in object
understanding tasks marked as Low, and High in purple, and Information Specificity in blue (e.g., Specific vs. General).

Scenario Setup Instruction to User Dimensions
. . You got a gift from your friend who just
. Participants were given a cup .
Understanding . . traveled back from a tourist spot. Can you | General
. with colorful graphics and . Lo
an object texts use TouchScribe to understand this object? | Low
' In terms of color, texts, and graphics.
Partici t i t
Understanding articipants ere given two , In the grocery store, you have two spice
spice bottles from Trader Joe’s, 1 1
and . . o bottles with different labels, colors, and
o including one chili lime . General
distinguishing . . texts. Can you use TouchScribe to tell the .
: seasoning with a red label and . o High
two different . . differences and the similarities between
. lid, and another oregano with
spice bottles . them?
a green label and lid.
Participants were given two
i ical (fi h
. identlca (*rom the brand . You just got the four spray bottles from a
Understanding Everyone®, ruby grapefruit), . .
. shared storage in your home. Can you use Specific
and categorizing | and the other two were from . .
. TouchScribe to categorize them based on Low
four spray bottles | the same brand (*Whole Foods their brands and scents?
365*) but had different scents ’
(cucumber aloe and lavender).
Participants were given three .
.. . . You want to find some snacks in a shared
L. carton of juices, including two . .
Finding products . . pantry, specifically, the chocolate bars with .
. . apple juices (100 & 35 calories) . . Specific
with specific the most cocoa and the apple juice with the .
. . and one lemonade (100 . High
information . fewest calories for your health. Can you use
calories), and three chocolate TouchScribe to help you find them?
bars (55, 65, 70% of cocoa). Py ’

(2) Distinguishing two similar objects: Participants were
provided with two seasoning bottles of identical shape but
differing in labels, colors, and text. They were asked to
identify both similarities and differences between the bot-
tles. The task concluded when participants felt they had
sufficiently understood these attributes and reported their
observations to the experimenter.

Sorting four similar objects: Participants were provided
with four bottles of similar shape and size: two identical bot-
tles of the Everyone brand (grapefruit scent) and two bottles
from the Whole Foods 365 brand with different scents (cu-
cumber aloe and lavender). They were asked to categorize
the bottles by brand and scent. The task concluded when
participants indicated they had completed the categoriza-
tion.

—
W
=

(4

=

Selecting objects based on specified needs: Participants
took part in a shared pantry scenario in which they were
asked to locate items based on specific nutritional informa-
tion. The setup included six products: three chocolate bars
with varying cocoa content (55%, 65%, and 70%) and three
beverages, two apple juices with 100 and 180 calories, and
one lemonade. Participants were instructed to identify the
chocolate bar with the highest cocoa content and the apple
juice with the fewest calories. The task concluded when
participants indicated they had finished.

For each task, objects were randomly placed on the table in front
of participants rather than deliberately staged. This allowed the ob-
jects to be encountered naturally without excessive search time, as
object finding was not the focus of our study. To support the collec-
tion of qualitative insights, participants were encouraged to think

aloud and take their time exploring TouchScribe while completing
the tasks. After completing all tasks, participants responded to a
set of Likert-scale questions (Figure 5), completed the NASA-TLX
form to assess cognitive load (Figure 6), and shared their overall
experiences.

The entire study lasted about one hour. Participants were com-
pensated for their transportation costs and an additional $25 for
their participation. This study was approved by the Institutional
Review Board (IRB) at our institution.

4.3 Data Collection and Analysis

For the user evaluation, we collected participants’ responses to a
set of Likert-scale questions across multiple dimensions, includ-
ing perceived effectiveness, intuitiveness, usefulness, perceived
accuracy and coverage of descriptions, and sense of agency when
using TouchScribe (Figure 5). Participants also completed the NASA-
TLX questionnaire [47] to assess cognitive workload. Additional
insights were obtained through open-ended questions in a semi-
structured interview, and the entire session was video recorded.
Two researchers transcribed the interviews and analyzed the quali-
tative data using affinity diagramming.

In addition, interactions with TouchScribe were logged for tech-
nical evaluation, including recognized gestures, generated descrip-
tions, and referenced frames (Section 6). To analyze these data, we
conducted a round-table discussion and annotation session with
four members of the research team. The researchers collaboratively
reviewed the images and their corresponding descriptions, dividing
the workload. Ambiguities or questions raised by any team member
were resolved through group discussion.
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Neither agree or disagree
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Somewhat agree W Agree = Strongly agree

The system provided a complete description of the object.
(coverage)

| was able to obtain the specific information | needed.
(effectiveness)

| felt that the interaction was intuitive.
(intuitiveness)

The system provided an accurate description of the object.
(accuracy)

| would use this system in my life for these tasks.
(usefulness)

| felt in control of how | received information about the object.
(agency)

1 2 3 4 5 6 7 8

Figure 5: Likert scale questions and aggregated responses of eight participants in our user study. This includes questions about
coverage (M=6.5, SD=1.07), effectiveness (M=6, SD=0.76), intuitiveness of gestures (M=5.63, SD1.41), accuracy of descriptions
(M=5.5, SD=1.6), usefulness (M=5.5, SD=1.69), and agency of using TouchScribe (M=5.13, SD=2.23).

4.4 Limitation

Our study was conducted in a controlled lab environment, with par-
ticipants seated throughout the sessions due to the study’s extended
duration. We acknowledge that this setting may not fully reflect
real-world conditions, where users may interact with cluttered
environments or objects that exceed typical hand-grasp ranges.
Although the neck-mounted smartphone was designed to approxi-
mate an egocentric perspective, it may be impractical for everyday
use because of potential social acceptability concerns. Such issues
could be mitigated through alternative form factors, such as smart
glasses or more discreet wearable setups (e.g., a yarn lanyard). Ad-
ditionally, lighting conditions and camera angles were adjusted
for each participant to accommodate the limitations of the cur-
rent hand landmark detection model. Despite these constraints, our
primary goal was to demonstrate the feasibility of delivering live
descriptions driven by hand-object interactions. We discuss these
limitations and potential solutions in Section 7.

5 User Evaluation Results

In general, participants were able to use TouchScribe to complete
a majority of the tasks. They commended the accuracy and cov-
erage of the information provided, as well as the intuitive way to
access specific details, especially in comparison to the tools they
currently use. However, participants also identified several limita-
tions, including latency in retrieving specific information due to the
hierarchical feedback design, interruptions triggered by uninten-
tional hand movements, and a learning curve associated with the
new interaction techniques. We elaborate on these findings below.

5.1 Overall Task Completion

Overall, participants successfully completed the majority of tasks
(27 out of 32 tasks), typically within 5-10 minutes, and reported
high perceived effectiveness in using TouchScribe to obtain specific
information (M=6.0, SD=0.76).

Specifically, for Task 1 — Understanding an object, participants
achieved an 87.5% completion rate by correctly identifying the text

and colors on the cup. Most used gestures, such as hold the cup
and flip it around to access surface details, and use and hold+point
to access its color. One exception was P1, who misidentified the
interior color as black due to shading while pointing inside the cup.

For Task 2 — Distinguishing two similar objects, all participants
successfully identified differences in brand names, spice labels, and
bottle colors. Common strategies we observed included holding
both bottles side-by-side for comparative descriptions or examining
each bottle individually at a time to verify visual details.

Similarly, in Task 3 — Sorting four similar objects, participants
reached a 75% completion rate. Most participants distinguished
the bottles using both color labels and visual descriptions, but
some struggled with reading text on curved surfaces, leading to
hallucinated or incomplete descriptions. This caused confusion for
P2 and P6, who did not complete the task.

In Task 4 — Selecting objects with specified needs, the completion
rate was 75%. All participants successfully identified the chocolate
bar with the highest cocoa content, but some encountered difficul-
ties with the juice selection. For example, P1 was unable to locate
the side with the calorie label and gave up, while P3 misremembered
the calorie values despite receiving accurate descriptions.

5.2 Perceived Accuracy, Completeness, and
Latency of Descriptions

Participants found that TouchScribe provided accurate and
comprehensive descriptions; however, the density and prior-
itization of the information occasionally hindered efficient
access.

Overall, participants perceived descriptions to be accurate (M=5.5,
SD=1.6) and complete (M=6.5, SD=1.07), such as “I can get descrip-
tions of bottle, texts on it, and colors too. Without a person or an
app like Be My Eyes or Aira, you usually just get one of them and
miss the full picture.” (P3) or “It’s detailed, descriptive, and reads
ingredients verbatim per se” (P2). P1 also found the coverage of
TouchScribe’s descriptions informative than his current apps: “If
I use Seeing Al, | just held it there a minute until it starts reading
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words. And as soon as | recognized a keyword, | knew what it was.
Whereas with [TouchScribe], it is more. It doesn’t just read the Tst
word that it comes to, but also recognizes the object like a box of
cereal. It’s Cheerios, whereas Seeing Al is just gonna start reading
randomly, heart health, 100 calories, and great with milk, and then it
might say, Cheerios. [TouchScribe] is recognizing the object, instead
of just saying words.”

However, despite the comprehensive coverage of information,
participants expressed mixed perceptions regarding the density
and prioritization of the spoken content. For example, participants
noted that hand-state feedback would be more appropriate as “a
tutorial at the beginning to understand what it sees (P6),” rather than
being presented regularly, which they found somewhat distracting.
Also, P4 felt the transitions between descriptions were smooth, but
suggested adding a brief pause in between for easier comprehension:
“It was telling me more than what | needed to know at that moment.
Maybe consider adding a second or two.”

Furthermore, the hierarchical feedback design, progressing from
brief to more detailed object descriptions, presented both advan-
tages and drawbacks. On the one hand, it could slow access to
specific details, such as retrieving nutritional information in Task
4, where a direct VQA might be more efficient. On the other hand,
it helped contextualize information and maintain coherence across
descriptions. For example, P3 found the hierarchical structure help-
ful for distinguishing between similar objects, noting in Task 3:
“It said that all of them were hand sanitizers and then went down
into more specific information, like this is orange blossom, and this
is cucumber. It drills down to the more specific information, and it
would be easy to tell which is which.”

5.3 Perceived Agency, Gesture Intuitiveness,
and Hand Constraints

Participants generally found the gestures intuitive and felt in
control when accessing information, though they also noted
usability challenges related to hand movements.

Participants rated the gestures as intuitive (M=5.63, SD=1.41)
and reported a sense of control when using TouchScribe (M=5.13,
SD=2.23). P2, who regularly used OrCam [16] for text reading, noted
that hand-based interaction provided greater control: “The way you
move your hand tells the system everything it needs to describe the
object. For glasses, you have to chin down, use your nose, and go down
towards the text to get everything in the block. This (TouchScribe) did
me a replacement by just holding the object.”

Similarly, P4 appreciated the immediacy of TouchScribe com-
pared to applications used in daily life, such as Be My AI [13]: “/
Jjust want immediate responses, because Be My Al will take a picture
and tell you some basic things. And you need to go to chat for more
information. [TouchScribe] is more immediate. You don’t have to
go through a chat to do it. That’s just right there at the fingertips.
Immediate. This would be a good app for people who do not have the
patience to mess with chat.”

Participants also found TouchScribe’s feedback on text detection
and object flipping helpful for identifying items whose visual infor-
mation is distributed across multiple surfaces and not fully visible
from a single viewpoint. This feature reminded participants of gro-
cery shopping experiences in which they needed to locate product
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barcodes to access digital information using existing assistive ap-
plications (e.g., Seeing AI [18]), suggesting that TouchScribe could
provide practical benefits in such contexts. As noted by P3, “That’s
difficult if you don’t know where the barcode is located. You need to
turn the item in all kinds of ways to get the system to recognize that
barcode. With this (TouchScribe), you don’t need to wait for locating
the barcode. It just told what this is, and if there is text. So | knew to
turn it to the other side.”

During the study, TouchScribe occasionally misinterpreted idle
hand movements or noise in posture detection as intentional in-
put, resulting in false positives and unintended interruptions (see
Section 6.1). Participants noticed these disruptions but generally
viewed the system’s sensitivity as a trade-off. As P7 said: “It restarted
whenever | was even just moving a little bit... but checks and bal-
ances...because previous descriptions might go on for too long if it
didn’t restart.” To adapt, some participants intentionally moved
their hands out of the camera’s view to pause the system and then
brought them back to reset the hierarchical feedback. We further dis-
cuss these limitations and propose future directions for improving
gesture recognition and intent disambiguation in real-time settings
in Section 7.2.
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M=319  M=25 M=1.31 |M=856 M =
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Figure 6: NASA-TLX responses from the user study. Higher
scores on the Performance dimension indicate better out-
comes, whereas lower scores on the remaining dimensions
reflect better outcomes.

5.4 Perceived Cognitive Load and Learning
Curve

Participants generally found TouchScribe usable and easy to
learn, though they reported moderate cognitive effort and
a noticeable learning curve related to gesture use and hand
positioning,.

Although participants rated TouchScribe as useful (M=5.5, SD=1.69),
the task design imposed noticeable but moderate cognitive demands
(NASA-TLX: M=3.19, SD=2.45 out of 10), as participants needed to
remember descriptions and associate them with the corresponding
objects. As P3 noted, “/ had to pay attention to try to remember what
it was saying,” and P6 described the experience as “like a memory
test.” Additionally, the walk-up-and-use study design introduced
extra effort in learning the mappings between hand gestures and
the description categories supported by TouchScribe.
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On the other hand, participants generally perceived the gestures
as common and easy to learn; however, the hold+swipe-up gesture
for accessing text was considered less intuitive. As P1 noted, “/
would not guess this unless you told me the inspiration was that (from
VoiceOver)”. In addition, participants reported that positioning their
hands within the camera frame required effort. P6 explained, “In
theory, it (TouchScribe) is very quick to learn, which only took us 2
minutes to go through all. In practice, it’s a learning process of getting
the hand placement just right, because it’s a little bit finicky.”

The combined effects of these challenges, including interrup-
tions from gesture recognition errors and delays introduced by
hierarchical feedback, occasionally increased cognitive effort. How-
ever, compared to current practices, participants still perceived
hand-based information access as convenient. As P1 remarked, “If
you are at the store and you have to continually find ways to read
different products, using hands would be easier and more convenient.”
We discuss potential improvements in gesture customization and
camera aiming to reduce these demands and enhance TouchScribe’s
usability in Sections 7.1 and 7.3.

6 Technical Evaluation Results

Using data from the user study, we conducted a technical evalua-
tion of (i) the hand gesture recognition performance of our pipeline
in live video stream, (ii) the accuracy of the system-generated de-
scriptions (Table 4), and (iii) the latency between gesture input and
description output (Table 5).

6.1 Performance of Hand Gesture and Gesture
Recognition in Live Stream

The goal of this evaluation was to assess the accuracy of our custom
gesture recognition models in live video settings, beyond single-
image performance. Unlike conventional model evaluations, we
considered the combined performance of the recognition models
and the temporal smoothing function (Section 3.5). We reviewed
gesture event logs and keyframes collected during the user study.

6.1.1 Dataset and Analysis. During the user study, all keyframes
and corresponding timestamps were automatically logged when-
ever a stable gesture state transition was detected. This enabled
evaluation of both the gesture recognition models across sequences
of frames and the effectiveness of the temporal smoothing algo-
rithm. Each keyframe was labeled with a gesture state, including
hold, touch, point, and out of view. In total, we collected 1,994 ges-
ture instances, with 1,077 from the left hand and 917 from the right
hand.

Each keyframe was manually annotated with a ground-truth
gesture label by the research team. Gesture classes were assigned
based on the visible hand pose, while the out of view label was
used when the wrist keypoint was not visible or when fingers
were partially occluded by image boundaries, objects, or the other
hand, conditions under which the Google MediaPipe hand landmark
model [9] may fail. We evaluated model performance by comparing
predicted gestures to these ground-truth labels and computing
standard metrics, including accuracy, precision, recall, F1-score,
and confusion matrices for both hands.
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6.1.2  Results. Among the 1,994 manually labeled instances, the
model achieved an Fj-score of 0.77. Among the gesture classes
(Figure 7), the “hold” gesture achieved the highest performance
(F1 = 0.84, precision = 0.97, recall = 0.75). The “touch” gesture
showed high recall (0.87) but lower precision (0.60), resulting in an
Fi-score of 0.71. Similarly, the “out of view” class achieved an F;-
score of 0.74 (precision = 0.66, recall = 0.84). The “point” gesture,
which had the fewest instances (N = 102), showed the lowest
performance (F; = 0.44, precision = 0.36, recall = 0.56).
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Figure 7: Confusion matrix for hand event detection of both
hands.

False positives and negatives were observed under various con-
ditions (Figure 8). For example, holding objects often resulted in
partial or full hand occlusion, such as when grasping a juice carton
or a box of chocolate bars (Figure 8e, f), which led to incorrect hand
landmark detection and both types of errors. Similar occlusions oc-
curred during discrete gestures like hold+point and hold+swipe-up.
In addition, body movements and camera angles occasionally re-
sulted in motion blurs and hands or fingers being partially cropped
or outside the frame (Figure 8g, h). We discuss these camera-related
issues and potential solutions in Section 7.3, as well as broader
improvements to our vision-only approach in Section 7.2.

6.2 Latency of Delivered Descriptions

Next, we measured the latency of descriptions to quantify how long
users waited before feedback was read aloud. This included hand-
state feedback, brief and detailed object descriptions, comparative
descriptions, color labels, and object texts. We measured end-to-
end latency as the time between detection of a new gesture and
the onset of the corresponding spoken description. This measure-
ment encompassed the entire processing pipeline, including gesture
recognition, retrieval of hand-object contact data and cropped im-
ages via Hands23 [36], prompt construction, response generation
by VLMs (from Figure 3a to Figure 3c), and text-to-speech synthesis.

6.2.1 Dataset and Analysis. In total, we analyzed all descriptions
presented to participants during the study, comprising 1,143 in-
stances of hand-state feedback, 416 instances of brief object descrip-
tions generated by Moondream [15], 208 instances of detailed object
descriptions generated by GPT-4o0 [11], 35 instances of comparative
descriptions generated by GPT-40, 529 instances of color labels, and
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Figure 8: Example keyframes extracted by TouchScribe and the corresponding recognized gesture classes. (a-d) TouchScribe
successfully identified gestures from both hands across varying camera viewpoints. (e) Recognition became challenging
sometimes when hands were occluded, either by a larger object (e.g., a chocolate bar) or (f) by the user’s other hand during
bimanual interactions. (g) Gestures could also be misclassified under certain camera angles or hand postures, such as when the
finger in a pointing gesture appears not extended from the camera’s viewpoint. (h) Motion blur caused by camera or hand

motion also influenced recognition reliability.

143 instances of object texts. We measured the latency for each
description type as the time between detecting a new gesture and
sending the corresponding frame to VLMs, and the moment when
the resulting description was delivered to the user. Below, we first
report the processing time of individual components in the pipeline,
followed by the end-to-end latency experienced by users.

6.2.2 Results - latency of each model. Because the latency of each
component contributes to the overall end-to-end delay, we report
individual model latencies to illustrate their respective performance
(Table 5). Under the hardware configuration described in Section 3.3,
Hands23 exhibited an average latency of 0.87 seconds (SD=0.86),
Moondream averaged 0.48 seconds (SD=0.62), and GPT-4o incurred
the highest latency, with a mean of 3.07 seconds (SD=3.08).

6.2.3  Results - end-to-end latency between gesture issued to descrip-
tions delivered. Under the hierarchical feedback design, brief object
descriptions typically followed hand-state feedback, with detailed
or comparative descriptions presented subsequently. In contrast,
discrete gestures such as hold+point for color identification and
hold+swipe-up for text retrieval allowed users to interrupt ongoing
narration and quickly access targeted information (Section 3.7).

In terms of end-to-end latency, hand-state feedback exhibited a
mean delay of 0.56 seconds (SD=0.91), providing near-immediate
confirmation of system perception. Among all feedback types, color
labels triggered by the hold+point gesture had the lowest latency
(M=0.09s, SD=0.17), while object text retrieval via hold+swipe-up
averaged 0.57 seconds (SD = 0.58).

In contrast, brief object descriptions generated by Moondream
averaged 5.36 seconds (SD=3.42), followed by detailed object descrip-
tions from GPT-40 with a mean latency of 10.3 seconds (SD=4.02).
Comparative descriptions from GPT-40 exhibited the highest latency,
averaging 14.0 seconds (SD=3.06). Notably, these latency values ac-
count for the completion of prior descriptions, during which users
were engaged with ongoing audio output rather than waiting idly.

6.3 Accuracy of Object Descriptions from VLMs

Lastly, we evaluated the accuracy of descriptions generated by
VLMs. The goal was to determine whether the information pre-
sented to the user is accurate and relevant. For each referenced
frame, we assessed whether TouchScribe correctly described the

interacted object and whether any hallucinations appeared in the
generated descriptions.

6.3.1 Dataset and Analysis. In total, we collected 802 descriptions
from the study, including 416 brief object descriptions from Moon-
dream, 143 object texts, 208 detailed object descriptions, and 35 com-
parative descriptions generated by GPT-4o. All instances were manu-
ally annotated for correctness. Descriptions were deemed incorrect
if the system misidentified the interacted object or exhibited hallu-
cinations.

6.3.2  Results. We evaluated the accuracy of 802 descriptions. Brief
object descriptions generated by Moondream achieved an accuracy
of 91.59% (381 out of 416). Detailed object descriptions generated
by GPT-40 reached 93.27% accuracy (194 out of 208). Comparative
descriptions generated by GPT-40 achieved 91.43% accuracy (32 out
of 35). Overall, the descriptions demonstrated strong accuracy, with
common errors including misidentifying a chocolate bar as a book,
hallucinating a mouse when users rested their hands on the table,
referencing the table instead of the held object, or failing to describe
objects when they were occluded by hands. In contrast, object texts
achieved lower accuracy at 67.83% (97 out of 143). This was primar-
ily due to challenges in recognizing text on the cylindrical bottles
used in the study, where curvature often distorted or partially oc-
cluded the text. Participants frequently relied on trial-and-error
repositioning to present readable text to the camera. We discuss
potential mitigation strategies in Section 7.3.

7 Discussion and Future Work

We discuss our lessons learned and design implications for gener-
ating live object descriptions with hands as natural information
cursors.

7.1 Supporting Customization and Adaptation
of Broader Gesture Set

To our knowledge, TouchScribe is the first system to deliver live,
rich descriptions driven by diverse hand-object interactions. Touch-
Scribe requires users to learn a predefined gesture set. This set,
though informed by prior research on gesture nature and BLV fa-
miliarity (Section 3.2), resulted in perceived cognitive load by our
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participants (Section 5.4). Nevertheless, qualitative feedback high-
lighted the utility of gestures and the enhanced sense of agency
they afforded in accessing object information (Section 5.3).

The current gesture set serves as a foundation that can be ex-
tended through user customization [50, 79, 90, 96, 103]. Such flex-
ibility is essential given the diversity of gesture preferences and
contextual needs among BLV users. Social acceptability, in particu-
lar, could play a key role in shaping gesture choice. For example,
mid-air gestures may be more suitable in private settings, where
BLV users have been observed performing metaphoric gestures
for tasks such as TV control, while sighted users tend to employ
symbolic gestures [38]. In contrast, subtle micro-gestures or touch-
screen interactions are often preferred in public environments due
to their discreet nature [79, 96].

Accordingly, while TouchScribe currently incorporates two micro
gesture interactions (e.g., pointing to a held object for colors and
swiping up for available texts) to demonstrate feasibility, the gesture
vocabulary could be expanded by drawing on interaction techniques
from existing assistive technologies, such as touchscreen screen
readers. Examples include swiping left or right to navigate at the
word level, using multi-finger swipes to access higher-level seman-
tic information, and familiar interactions such as pinch-to-zoom
for localized text exploration.

Future work could involve systematic elicitation studies with
BLV users to capture gesture preferences across public and private
contexts, as well as the development of adaptive AI companions
capable of learning and personalizing gesture mappings over time.

7.2 Design Implications for Low-Latency,
Context-Aware Gesture Recognition

Hand movements are inherently complex and dynamic, making
them difficult to capture reliably using a camera stream alone. Par-
ticipants observed occasional interruptions in descriptions while
using TouchScribe (Section 5.3), which were attributable to limita-
tions in our custom gesture recognition models (Section 6.1). Even
when at rest, hands may unintentionally resemble supported ges-
tures. These erroneously detected gestures prompted TouchScribe
to start generating new descriptions.

Incorporating additional contextual cues could be essential to
mitigate unintended gesture recognition by better distinguishing
intentional from unintentional hand activities. For example, high-
level user activities can be inferred from full-body posture [24] and
enriched through on-body sensors or wearable devices [25, 55, 68,
77,103], enabling the system to disregard situations in which hands
are merely resting on objects or laps, or casually moving during
locomotion. Furthermore, object contact and categories may be
inferred from complementary sensing modalities, such as acoustic
signals [52] and electromyography [39]. Incorporating diverse sens-
ing techniques could help reduce reliance on a vision-only pipeline,
particularly susceptible to occlusion, and support cross-validation
of gesture and object recognition across modalities (Section 6.1).

Beyond sensor fusion, embedding common knowledge about
everyday object use, typical hand postures, and users’ habitual in-
teraction patterns could further filter out irrelevant contexts, such
as hands resting on tables or interacting with familiar items like
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keyboards, laptops, or mice. Additionally, inaccuracies in text recog-
nition arising from curved surfaces (Section 6.3) could be alleviated
by recognizing and combining texts from multiple previously cap-
tured views of an object’s surface.

Recent advances in VLMs, including improvements in both accu-
racy and latency and the emergence of lightweight models such as
Gemini-Flash [8], suggest that system responsiveness will continue
to improve. Reduced latency also allows greater temporal budget for
incorporating these complementary sensing components into the
description pipeline, which could further enhance overall system
reliability and accuracy.

7.3 Trade Offs between Camera Devices,
Configurations and Practicality

Camera-based ATs face several long-standing challenges [45, 49,
61, 62, 73, 84, 94, 95], including maintaining target objects within
the camera frame [45, 95], ensuring adequate coverage of essential
visual content [49, 73], and addressing the social acceptability of
camera setups [26, 57, 83]. While these considerations informed
the design of TouchScribe (Sections 3.2 and 3.3), further work is
needed to support practical deployment in real-world contexts.

In TouchScribe, we employed a neck-mounted smartphone to
free users’ hands and approximate an egocentric perspective. This
design was inspired by the potential of emerging smart glasses,
which at the time of development involved several trade-offs. Smart-
phones, by contrast, offered more accessible APIs than commercial
smart glasses, greater flexibility in adjusting camera resolution and
FoV (e.g., standard versus wide-angle), and sufficient battery life
to support extended study sessions. Although this setup met our
research needs, neck-mounted cameras differ from head-mounted
configurations, requiring additional synchronization between head
orientation and hand movements [46, 48]. Moreover, such setups
may be uncomfortable for prolonged use or raise concerns regard-
ing social acceptability in everyday contexts [26, 31, 83], espe-
cially given varying privacy sensitivities among BLV users and
bystanders.

We selected a wide FoV (FoV; 120°) rather than a standard FoV
(77°) to balance coverage and distortion. While standard FoV lenses
introduce minimal distortion and support more reliable hand detec-
tion, their limited coverage makes it difficult to capture both hands
and relevant objects simultaneously. Consequently, we opted for a
wide-angle lens to increase coverage despite its greater distortion,
which negatively affected hand detection performance (Section 6.1).
Although TouchScribe provided feedback on perceived hand states,
participants were often unaware of the camera’s intrinsic limita-
tions, as reflected in comments such as: “I’'m wondering, does closer
to the camera matter? (P2) and “T’'m blind, so I don’t think about how
the camera looks and stuff. So this is all good learning.” (P5).

Building on this feedback, future research could explore a broader
range of camera-mounting configurations (e.g., body-mounted or
head-mounted) to better accommodate individual preferences, com-
fort, and social contexts. This may involve integrating additional
sensors, such as IMUs in wrist- or head-mounted devices, and pro-
viding feedback to address head-hand misalignment, such as hap-
tic-audio guidance techniques for camera aiming [23, 53]. Adaptive
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lens-selection strategies based on hand-camera distance and ob-
ject distribution could further improve coverage and accuracy; for
example, switching to a wide FoV to cover multiple objects and to
a standard FoV when focusing on a single object.

7.4 Gesture-driven Descriptions Beyond
Physical Reach

TouchScribe delivers live visual descriptions driven by hand—object
interactions within reach. Participants found this approach intuitive
(Section 5.3) and more efficient than photo-capturing and chat-
based interactions in current assistive apps. While TouchScribe
centers on holding and touching objects, this may not always be
feasible due to social stigma, safety concerns, or personal comfort.
We discuss circumstances that limit tactile engagement, and outline
potential ways to support gesture-based interaction even when
physical reach is constrained.

Cultural taboos surrounding public touch, reinforced by norms
such as the ubiquitous museum rule of “don’t touch”, can lead BLV
individuals to internalize tactile exploration as socially inappropri-
ate [17]. Additionally, some BLV individuals may avoid touch due
to negative prior experiences, such as being compelled to explore
unfamiliar objects without preparation, consent, or agency [21, 74].
Beyond social stigma, tactile exploration can also present safety
concerns, especially during public health crises such as the COVID-
19 pandemic [5, 6, 27]. These challenges are further compounded
by physical constraints, as some objects of interest, such as items
placed on high shelves in grocery stores, may be inaccessible.

To extend gesture-driven descriptions beyond direct physical
reach, future systems could build upon prior work on interaction
proxies [69, 71, 108] and camera motion-enabled live description
tools [18, 34] (Table 1). For example, after receiving an initial
overview of a visual scene and confirming interest, users could
employ subtle mid-air gestures [14, 55] (e.g., pinch) or touch ges-
tures on an interaction proxy (e.g., touchscreen) to navigate details
with audio feedback. Such integrations would broaden access to
visual environments both within and beyond physical reach.

8 Conclusion

In this work, we introduced TouchScribe, a system that augments
hand-object interactions with automated, live visual descriptions.
By leveraging egocentric hand gestures as information cursors,
TouchScribe enables users to enrich their understanding of objects
through diverse interaction patterns, such as holding or touching
an object to receive hierarchical descriptions, comparing objects
by holding them side by side, and swiping upward to read avail-
able text. Through a controlled user study and technical evaluation,
we demonstrated that TouchScribe delivers reasonably accurate,
timely, and informative feedback to support BLV users across a
range of object exploration tasks. Participants perceived Touch-
Scribe to be easy to learn and intuitive, and felt in control when
accessing object information. Finally, we discussed implications for
real-world deployment, including supporting gesture and informa-
tion customization, improving gesture recognition and description
accuracy through broader contextual awareness, considering di-
verse camera configurations and social acceptability, and extending
hand-driven interaction beyond physical reach.
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A Tables
Table 3: Participant demographic information, referred to as P1 to P8.
ID | Age | Gender | Self-Reported Visual Ability Assistive App Use
P1 | 41 Male Blind due to Retinitis Pigmentosa, left < 0.5 degree, de- | SeeingAl, BeMyAI BeMyEyes, Aira,
pends on lighting to identify the color of the object. Orcam, SoundScape, and VoiceVista
P2 | 58 Female | Right: blind. Left: Usable vision using a physical magni- | SeeingAl, BeMyAI BeMyEyes, Aira,
fier. and Orcam,
P3 | 50 Female | Blind, since birth. Light perception. SeeingAl, BeMyAI BeMyEyes, Aira,
Orcam and BlindSquare
P4 | 73 Female | Blind, since birth. Light perception. SeeingAl, BeMyAI BeMyEyes, and
Aira
P5 | 41 Male Blind, since birth. Light perception. SeeingAl, BeMyAI BeMyEyes, and
SoundScape
P6 | 60 Female | Blind, since birth. BeMyAI and BeMyEyes
P7 | 24 Female | Blind, acquired since 13. None
P8 | 18 Male Low vision due to Stargardt. Right: 20/1000, Left: 20/600, | SeeingAl
Light to Moderate color blindness.
Table 4: Accuracy of object descriptions generated by VLMs.
Description Type Instances Correct Accuracy (%)
Object labels (Moondream) 416 381 91.59
Detailed descriptions (GPT-40) 208 194 93.27
Comparative descriptions (GPT-40) 35 32 91.43
Object texts (GPT-40) 143 97 67.83

Table 5: Latency results for description generation, reported as mean and standard deviation (SD) in seconds.

Description Type / Model

Instances

Avg. Latency (s) SD (s)

Model Processing Latency

Hands23 [36] - 0.87 0.86
Moondream [15] - 0.48 0.62
GPT-4o0 [11] - 3.07 3.08
End-to-End Latency (Gesture Identified — Description Spoken)
Hand state descriptions 1143 0.561 0.91
Object labels (Moondream) 416 5.36 3.42
Detailed descriptions (GPT-40) 208 10.3 4.02
Comparative descriptions (GPT-40) 35 14.0 3.06
Object texts (GPT-40) 143 0.57 0.58
Color labels 529 0.087 0.169
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