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Figure 1: TouchScribe augments hand-object interactions with live visual descriptions. (a) BLV users use TouchScribe to explore 
objects placed on the shared kitchen counter. (b) While holding an object, BLV users receive hierarchical descriptions, starting 
with the hand state, followed by a brief summary, and then detailed descriptions. (c) They can also ask TouchScribe for 
visual information using speech. (d) Through finger gestures, users can access object details; for example, holding the object 
and pointing with the other hand reads its color; (e) holding and swiping up reads the text. (f) When holding two objects 
simultaneously, users receive a visual comparison highlighting their similarities and differences. 

Abstract 
People who are blind or have low vision regularly use their hands 
to interact with the physical world to gain access to objects’ shape, 
size, weight, and texture. However, many rich visual features remain 
inaccessible through touch alone, making it difficult to distinguish 
similar objects, interpret visual affordances, and form a complete 
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understanding of objects. In this work, we present TouchScribe, 
a system that augments hand-object interactions with automated 
live visual descriptions. We trained a custom egocentric hand in-
teraction model to recognize both common gestures (e.g., grab to 
inspect, hold side-by-side to compare) and unique ones by blind 
people (e.g., point to explore color, or swipe to read available texts). 
Furthermore, TouchScribe provides real-time and adaptive feedback 
based on hand movement, from hand interaction states, to object 
labels, and to visual details. Our user study and technical evalua-
tions demonstrate that TouchScribe can provide rich and useful 
descriptions to support object understanding. Finally, we discuss 
the implications of making live visual descriptions responsive to 
users’ physical reach. 
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1 Introduction 
People who are blind or have low vision (BLV) often rely on touch 
to explore and interact with the physical world, using their hands to 
perceive essential attributes of objects such as shape, size, weight, 
and texture [67, 99, 100]. However, many rich visual features re-
main inaccessible through touch alone, making it difficult to fully 
understand an object’s appearance and functionality. For example, 
it is difficult to distinguish between grocery store products with sim-
ilar shapes but different colors, patterns, or surface details without 
visual cues [60, 63]. Certain visual affordances, such as identically 
shaped seasoning bottles from different brands, similar tea bags 
with or without caffeine, or small printed ingredient labels, may be 
entirely imperceptible through touch. 

Currently, BLV individuals can capture photos and engage in con-
versations with AI systems to obtain visual descriptions [7, 13, 18], 
or receive live narration to explore their surroundings [4, 34]. How-
ever, these AI systems often struggle to accurately identify the 
specific object of interest within an image (as noted in [62, 65]), 
generate long-form descriptions that contain unnecessary informa-
tion, and their turn-taking interaction style can impede the quick 
retrieval of desired visual information. In contrast, hands provide 
a natural and intuitive interface for interacting with the physical 
world [61, 62, 64, 65]. Their movements are indicative of a person’s 
intent [32] and objects of interest [33, 111], making them integral 
to how BLV individuals access and understand their environment 
through tactile exploration [41, 109]. Hence, in this paper, we inves-
tigate the question: How can natural hand interactions be leveraged 
to support BLV people to access rich visual information about objects 
of interest? 

To address this question, we introduce TouchScribe, a system 
that provides live visual descriptions driven by hand-object interac-
tions. TouchScribe supports a set of hand gestures inspired by prior 
research on discreet gestures preferred by BLV individuals [80, 81], 
such as pointing to an object held in the other hand to read its 
color [75, 89] or swiping across it to access available text (Figure 1d, 
e). TouchScribe also incorporates common gestures used with sight, 
such as touching or holding objects to signal interest (Figure 1b), 
and comparing two items side-by-side to explore visual similarities 
or differences (Figure 1f). Based on different hand interactions with 
objects, TouchScribe provides hierarchical feedback, including hand 

states for users to confirm that hand events are correctly identified, 
a brief object overview, and rich visual details (Figure 1b). 

TouchScribe was prototyped using a neck mount with an at-
tached smartphone (Figure 4). It detects fine-grained hand-object 
interactions, such as when both hands engage the same or different 
objects, or when an object is flipped, to deliver adaptive feedback 
that aligns with the user’s evolving focus and intent. To support 
these hand-object interactions, we fine-tuned a custom egocentric 
hand gesture recognition model that interprets different hand ges-
tures as information cursors to identify objects or information of 
interest. The underlying gesture recognition model is lightweight 
enough to run on live video feeds, and the wide camera field of view 
(FoV) provides broad coverage, though at the cost of accuracy due to 
inherent model limitations and distortion from the wide-angle lens. 
TouchScribe addresses these by integrating smoothing algorithms 
to mitigate intermittent recognition and extract keyframes. It also 
supports visual question answering (VQA), enabling users to freely 
query visual details when needed (Figure 1c). 

We conducted a study with eight BLV participants to collect both 
qualitative and quantitative data, aiming to understand their experi-
ences with using TouchScribe across various object-understanding 
tasks in our lab-controlled environment, and to evaluate the accu-
racy and latency of descriptions. Through qualitative analysis, we 
found that participants generally perceived TouchScribe interac-
tions as intuitive (M=5.63 out of 7), with the provided descriptions 
being accurate (M=5.5) and comprehensive (M=6.5). Participants 
also felt a sense of control in the descriptions for object understand-
ing (M=5.13). However, participants reported moderate cognitive 
effort (as measured by NASA-TLX) and a noticeable learning curve 
in hand positioning and gesture recognition with camera-enabled 
assistive technologies (ATs). Also, through our technical evaluation, 
we reported quantitative results to reflect TouchScribe’s perfor-
mance in our user study, including the accuracy of our custom 
hand posture recognition model in the live stream (𝐹1 = 0.77), the 
latency between detected hand movements and different types of 
descriptions (from 0.56s to 14s), and the accuracy of the descriptions 
(from 67.83% to 93.27%). 

Through the study, we identified several gaps in the current 
TouchScribe prototype that limit its practical use. For example, 
while the wide camera FoV offered broader coverage, it also intro-
duced inaccuracies due to image distortion. In addition, interpreting 
the intent behind diverse natural hand–object interactions remained 
challenging, and at times the system produced information over-
load during rapid hand gesture changes. Based on these findings, 
we discuss the implications to make TouchScribe generalizable for 
broader real-world situations in the future, such as customizations 
to different gesture preferences, integrating haptic-audio feedback 
for camera aiming, leveraging other gesture and object recognition 
techniques to improve accuracy, and making live visual descriptions 
responsive to users’ further physical reach. 

In summary, our work contributes: 

(i) TouchScribe, a novel prototype system that generates live, 
rich object descriptions based on multiple hand-object inter-
actions, moving beyond the single interaction and informa-
tion types supported in earlier systems (Table 1). 

https://doi.org/10.1145/3772318.3791308
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Table 1: Overview of research and commercial apps for providing live visual descriptions leveraging different information 
cursors for real-world understanding. 

Assistive System Cursor Type Information Type 
Orcam [16], FingerReader [30], 
VizLens [43] and StateLens [44] Finger tip Text 

Medeiros et al. [75] 
Stearns et al. [89] Finger tip Clothing color and texture 

EyeRing [78] Finger tip Barcode, currency 

SeeingAI [18] Camera motion 
Human, currency, barcode, object, color, 
lightness, and text 

WorldScribe [34] Camera motion Object labels, general and detailed descriptions 

TouchScribe (this work) Hands and fingers Hand states, color, text, brief and detailed 
object descriptions, and object comparison 

(ii) A user study and technical evaluation demonstrating the 
intuitiveness of TouchScribe, usefulness of its descriptions, 
and its overall user experience. 

(iii) Lessons learned from the development and evaluation of 
TouchScribe, and design implications for employing egocen-
tric camera-enabled, real-time assistive technologies in the 
real world. 

2 Related Work 
Our work builds upon and connects three key research domains. 
First, prior research on hand-based interactions has shown that the 
expressive and intentional nature of hands provides a compelling 
alternative to device-based input (e.g., controllers) though user pref-
erences vary depending on different contexts, which informed our 
selection of gestures in TouchScribe. Second, studies on the use 
and limitations of hand interactions in current ATs for accessing 
real-world information revealed opportunities for TouchScribe to 
incorporate more expressive hand–object interactions and deliver 
richer visual information. Third, advances in vision–language mod-
els (VLMs) have demonstrated their potential to enhance access 
to visual content without human assistance; however, they remain 
limited in usability and in providing live object descriptions driven 
by hand–object interactions. This motivated our approach of using 
hands as information cursors to proactively deliver essential visual 
information beyond the repetitive speech prompts of current AI-
enabled ATs. Below, we discuss insights from these domains that 
shaped the design of TouchScribe. 

2.1 Hand Interactions as Intent Cues 
Hands provide a natural and intuitive interface for interacting with 
the physical world, effectively conveying users’ intentions [32], 
actions [72], and objects or areas of interest [33, 111]. Hand ges-
tures are highly expressive and support a wide range of tasks for 
the general population, including animation creation and author-
ing [28, 70, 85, 110], mode switching [91], typing [56, 105], and 
object manipulation [51, 58, 66, 76, 82, 97, 106]. Beyond visual in-
teractions, hands also play a crucial role in nonvisual exploration. 
For BLV individuals, tactile exploration strategies vary widely and 
include bimanual, unimanual, and alternating approaches [98, 109], 
which demonstrated the adaptability of hand use strategies to dif-
ferent information needs. However, when considering the social ac-
ceptability of hand interactions, on-body gestures performed within 
the hands, such as tapping or swiping a finger across one’s opposite 

palm, are generally preferred. Unlike bodily gestures (e.g., making 
an ’OK’ sign, waving) [37], these gestures are more discreet, socially 
acceptable, and feel natural in everyday contexts, such as quickly 
checking for new messages while commuting [80, 81]. Drawing 
from these works, in TouchScribe, we also considered unique and 
usable hand interactions for accessing information. 

2.2 Current Use of Hand Interactions for 
Assistive Technologies 

Hand-based interactions have been explored in both commercial 
ATs and prior research. For instance, BLV individuals commonly 
access digital information through touch gestures on smartphones. 
Swipe gestures, for example, enable screen navigation, such as swip-
ing left or right for word-by-word reading, or using a two-finger 
swipe up in screen readers like TalkBack [10] or VoiceOver [19] to 
read from the top of the screen. While these methods are effective in 
digital contexts, comparable approaches for accessing information 
of physical objects remain limited, often requiring photo capture 
followed by a question–answering process. Though tactile explo-
ration can support object understanding [41, 109], many rich visual 
features, such as labeled texts, colors, or intricate patterns, remain 
inaccessible through touch alone. 

To bridge this gap, prior research has explored using the hands 
and fingers as information cursors to access visual information in 
real-time [45]. For instance, prior systems, such as VizLens [43], 
StateLens [44], and FetchAid [42], support interactions with ap-
pliance control panels by allowing users to point to interface ele-
ments that are subsequently read aloud. Finger-mounted camera 
systems have been explored as a means of supporting BLV users 
in accessing visual details, including text [30, 40, 86, 88], currency 
and barcodes [78], and clothing color and texture, while maintain-
ing tactile feedback for hands-on exploration [75, 89]. Building on 
this direction, Lee et al. [61, 62, 64, 65] proposed custom models 
that leverage hand position to localize objects of interest for more 
effective intent disambiguation and camera alignment. 

Despite these advances, existing systems (Table 1) often rely on 
a limited set of gestures and hand-held devices for photo capturing, 
and provide only single or limited forms of visual feedback (e.g., 
text, color). In contrast, enabled by an integrated hand recognition 
and description generation pipeline, TouchScribe offers a fluid, 
hands-free, and integrated experience by delivering live, rich object 
descriptions driven by hand-object interactions. For instance, BLV 
users can hold or touch an object with one hand to obtain rich visual 
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details, point the object with another to read colors, or perform 
a swipe-up gesture to access its available texts. Such natural and 
expressive information access was lacking in prior systems. 

2.3 Visual Descriptions with VLMs 
Beyond relying on remote sighted assistance [1, 2] or crowdsourc-
ing [29, 92], where human agents may not always be available, 
recent advancements in VLMs have enabled applications that allow 
BLV individuals to easily submit image-description queries to AI-
powered VQA systems [3, 7, 13, 59, 102] or receive real-time visual 
descriptions from live video AI systems [4, 34]. These technolo-
gies promote the independence and autonomy of BLV individuals 
without requiring sighted assistance. We discuss them below. 

2.3.1 Image Capture and Visual Question Answering. Current AI-
powered visual description systems require users to capture photos 
and engage in dialogue with AI assistants to obtain specific visual 
details [3, 7, 13, 59, 102]. This process of photo capturing and turn-
taking can be laborious and time-consuming. For example, taking 
pictures demands precise camera alignment to ensure the object 
of interest is within the frame [22, 29, 53, 54, 93], often involving 
repeated trial and error. Although cameras with a wider FoV may 
help mitigate this issue [49], users must still explicitly specify their 
needs and interact with the AI to obtain desired details. This turn-
taking VQA process is further challenged by the dynamic nature of 
the real world, where generated descriptions can quickly become 
outdated as the environment changes. 

2.3.2 Live Video Feed and Generative Descriptions. Building on 
photo-taking, ChatGPT’s Advanced Voice with Video [4] enables a 
conversational approach to retrieving visual information through a 
live video feed. However, instead of proactively delivering essential 
details, it depends on continuous speech prompts from the user [35], 
which may introduce turn-taking delays, increase effort, and raise 
concerns about privacy and social acceptability. To overcome this 
lack of proactivity, WorldScribe [34] provides live visual descrip-
tions that dynamically adapt to camera motion and the captured 
visual content. For example, WorldScribe [34] enhanced users’ envi-
ronmental awareness by providing brief object labels as the camera 
panned across the surroundings, and offered richer visual details 
when the camera focused on a specific scene. In contrast to envi-
ronmental understanding, our work explores using hand gestures 
as information cursors to proactively describe objects based on 
how the user is interacting with them, enabling more responsive, 
intuitive, and fine-grained object understanding in real time. 

3 TouchScribe 
TouchScribe is a system that provides live, rich object descriptions 
based on the user’s hand interactions with physical objects. It de-
tects three types of hand gestures and identifies hand activities in 
each frame (Hand Gesture Recognition Layer in Section 3.4). Then, 
TouchScribe extracts keyframes from live video stream based on 
these hand activities (Keyframe Extraction Layer in Section 3.5) to 
generate multiple forms of feedback, including hand states, object 
color, available texts, and brief and detailed object descriptions, and 
object comparisons (Description Generation Layer in Section 3.6). 
We describe our design goals and implementation details below. 

Figure 2: Overview of the variety of gestures, timings to ex-
tract keyframes, and description types supported by Touch-
Scribe. 

3.1 Design Goals 
TouchScribe is designed based on three primary goals inspired by 
prior work: 

G1 - Supporting common and usable gestures. Hand inter-
actions serve as valuable intent cues for disambiguating objects 
of interest [61, 62, 64, 65] and indicating the locations of relevant 
information (e.g., text [42–44] or color [75, 89]). However, because 
hand–object interactions vary across individuals and contexts [109], 
as an initial step, TouchScribe should demonstrate a set of common 
and usable gesture types for BLV individuals. 

G2 - Supporting proactive and real-time feedback. Given 
the current strengths and limitations of photo-capturing and VQA-
based approaches [35, 101], which provide access to specific in-
formation but introduce delays and turn-taking overhead, Touch-
Scribe should primarily emphasize proactive feedback while still 
supporting VQA when needed. Moreover, TouchScribe’s descrip-
tions should be closely synchronized with hand interactions, min-
imizing latency between touch and audio output to enhance the 
overall user experience. 

G3 - Conveying system-perceived states of hand-object 
interactions. Given that camera aiming has long posed challenges 
for BLV users [22, 29, 53, 93], it is essential to clearly communicate 
whether the system has detected users’ hands and what it has 
recognized, enabling users to take appropriate follow-up actions. 

3.2 Gestures to Access Visual Information 
To fulfill G1, TouchScribe supports six gestures (Figure 2a), cate-
gorized along two dimensions: (i) familiarity, gestures that are 
common versus those unique to BLV users, and (ii) gesture na-
ture, gestures that are continuous versus discrete. These gestures 
are informed by prior research on commonly used assistive tech-
nologies or discreet on-body gestures [80, 81]. Each gesture maps to 
a distinct prompt for VLMs to generate corresponding descriptions 
(Details are in Section 3.6). 
(1) Hold an object with a single hand (common & continuous) 

– Holding an object of interest is a common practice for exam-
ining its visual or tactile details, such as reading nutritional 
information on a bottle or exploring its shape. 

(2) Touch an object with a single hand (common & continu-
ous) – Touching an object with a few fingers is common for 
indicating an object of interest in sighted interaction [111], and 
is also widely used in tactile exploration by BLV people [109]. 
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(3) Hold or touch explore an object with both hands (unique 
& continuous) – Using both hands to explore objects through 
touch is a common tactile exploration pattern among BLV in-
dividuals, particularly when interacting with flat or textured 
surfaces such as tactile graphics [41, 109]. 

(4) Hold or touch objects side-by-side with both hands (com-
mon & discrete) – When comparing similar items, such as 
ingredient labels on two bottles or subtle shape differences be-
tween boxes, people often place or hold them side by side to 
facilitate comparison. 

(5) Hold an object in one hand and point with another hand 
to reveal visual details (unique & discrete) – Pointing ges-
tures are common for BLV people to access specific informa-
tion, such as color [89], text [30, 40, 43, 44, 86–88], or tex-
ture [89, 104]. 

(6) Hold an object in one hand and two-finger swipe up with 
another hand to read texts. (unique & discrete) Two-finger 
swipe-up gestures are commonly used in screen readers such 
as iOS VoiceOver [19] and Android TalkBack [10] to read on-
screen text from top to bottom. Because the exact locations of 
text are often unknown to BLV people, we adapt this gesture 
to enable access to available text on an object. 

3.3 Implementation Details 
To enable TouchScribe to provide real-time feedback (G2), we trade 
off different factors to maximize the computing speed while main-
taining decent accuracy (See Section 6), such as the choices of the 
models, or the frame size. TouchScribe servers include a local server 
running on a MacBook M4 Max and a remote server with two em-
bedded Nvidia GeForce RTX 4090 GPUs. TouchScribe uses a neck 
mount with an attached iPhone 13 Pro (Figure 4). The smartphone 
offers more APIs than emerging smart glasses at the time of de-
velopment, and greater flexibility in selecting frame resolution for 
real-time use and camera FoV for coverage. The TouchScribe iOS 
app uses the wide lens, the 13 mm-equivalent rear camera with an 
approximately 120° FoV, whereas the standard wide lens (26 mm-
equivalent) offers a 77° FoV. It streamed the video frames (width: 
720, height: 960, configured to retain approximately 70% image 
quality) to the local server through a Socket connection. Google Me-
diaPipe [9], the hand gesture recognition model and finger motion 
classification model, runs on the local server and achieves around 6 
frames per second (FPS). Other models that require higher compu-
tational resources run on the remote server, including Hands23 [36] 
for detecting hand–object contacts (𝐹1-score=79.1), SigLIP [107] for 
generating image embeddings, and Moondream [15] for producing 
brief object descriptions. 

3.4 Hand Gesture Recognition Layer 
In this layer, TouchScribe aims to recognize the aforementioned 
hand gestures in a lightweight manner to support real-time perfor-
mance alongside other models for live visual descriptions (G2). To 
achieve this, we fine-tune a hand gesture classification model and 
a finger motion classification model, which identify gestures and 
finger movements based on hand landmarks detected using Google 
MediaPipe [9]. We describe these models in detail below. 

3.4.1 Hand gesture classification model. We fine-tuned a publicly 
available keypoint classification model [12] to adapt its model struc-
ture for our supported gesture set. The model takes a 2D keypoint 
vector as input and outputs a hand gesture class. Specifically, the 
input vector has a dimensionality of 42 corresponding to the (𝑥, 𝑦) 
coordinates of 21 hand keypoints extracted from Google Medi-
aPipe [9]. The output includes three gesture categories, touch, hold, 
and point, for each hand. Additionally, a gesture is labeled as out of 
view when no hand keypoints are detected by Google MediaPipe [9]. 
This results in a total of four classes for each hand. 

3.4.2 Finger motion classification model. To support the two-finger 
swipe-up gesture described in Section 3.2, we fine-tuned a finger 
motion classification model from the same publicly available reposi-
tory [12]. The model takes as input a time-series history of a finger-
tip’s 2D coordinates (𝑥 , 𝑦), sampled every 16 frames and resulting 
in a flattened input vector of size 32. The output includes three 
finger motion gesture categories, including static, up, and down. 
This model is executed only when one hand is in the hold state and 
the other is in the touch state, with both the index finger and thumb 
of the touch hand located within the bounding box of the hold hand 
(Figure 3e). 

3.5 Keyframe and Object Extraction Layer 
In this layer, TouchScribe identifies keyframes when users per-
form new gestures or flip an object, signaling the need for updated 
descriptions (G3). A key challenge arises from the intermittent 
predictions produced by the gesture recognition models due to 
real-time performance requirements (G2), which may reduce accu-
racy and lead to false positives. To mitigate this issue, TouchScribe 
applies a temporal smoothing function that analyzes consecutive 
frames to infer a stable gesture state for each hand. 

First, TouchScribe verifies whether the past 𝑥 gestures of either 
hand consist of a single gesture class repeated at least 𝑡 times (e.g., 
hold, touch, point, or out of view). If this condition is satisfied, that 
gesture is assigned as the stable gesture state. Otherwise, Touch-
Scribe checks whether the previous stable gesture state appears 
within the last 𝑛 frames and retains it if so. If neither condition 
holds, the most frequent gesture in the last 𝑛 frames is selected as 
the current gesture. Based on our apparatus and empirical tests, 
we set 𝑥 = 12, 𝑛 = 6, and 𝑡 = 4. Whenever the stable gesture 
state transitions to either hold or touch, the corresponding frame 
is marked as a keyframe and sent to the Hands23 [36] model to 
identify hand–object contact details, supplementing prompt data 
for the description generation pipeline (Figure 3b). 

In addition, when the stable gesture of either hand remains as 
hold or touch across keyframes, TouchScribe analyzes whether 
the object is unchanged by periodically cropping the object image 
and computing the cosine similarity between the current image 
embedding and those from the previous 𝑠 samples (Figure 3f). If 
the similarity scores with all 𝑠 prior samples fall below a threshold 
𝑢 , the frame is marked as a keyframe, which indicates a potential 
change or flip of the object. Based on our apparatus and empirical 
tests, we set 𝑠 = 4 and 𝑢 = 0.85. 

The extracted keyframes and objects are passed to VLMs to 
generate hierarchical feedback and descriptions. The structure of 
these prompts and outputs is detailed in the following section. 
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Figure 3: TouchScribe System Diagram. (a) TouchScribe performs gesture recognition on live video streams. For each camera 
frame, hand landmarks are extracted with Google MediaPipe [9] and classified into predefined gesture categories. A temporal 
smoothing module then aggregates multiple frames to produce stable keyframes and gesture states. (b) For each keyframe, 
Hands23 [36] infers object contact. The contact data, together with a cropped image of the object, is passed to VLMs for further 
processing. (c) VLMs, including Moondream [15] and GPT-4o [11], are executed in parallel to generate rich object descriptions. 
(d) When one stable state is hold and the other is point, TouchScribe reads the color of the small region the finger is pointing to. 
(e) When one stable state is hold and the other is touch, TouchScribe tracks finger motion and reads the text once both fingers 
move up. (f) TouchScribe also maintains a history of cropped objects and identifies flipped instances by comparing image 
similarity, and re-runs the generation pipeline on the updated crop. 

3.6 Description Generation Layer 
In this layer, TouchScribe generates descriptions with adaptive lev-
els of detail based on the user’s hand-object interactions. To achieve 
this, TouchScribeintegrates outputs from multiple components, in-
cluding gesture states from the hand gesture recognition mod-
els, hand–object contact information inferred by the Hands23 [36] 
model, and the extracted keyframes and objects. TouchScribe dy-
namically incorporates these details to construct descriptions or 
prompts for VLMs to generate rich object details. We detail each 
type of description and its generation process below. 

Hand-State Feedback. Hand-state feedback helps users assess 
whether the hands are correctly captured and identified (G3). When-
ever the user’s hands are detected within the camera view, Touch-
Scribe generates feedback such as “I see your {which_hand} hand” 
to help users confirm the presence of their hands in the frame, 
where “{which_hand}” is dynamically assigned as left, right or both. 
Then, TouchScribe describes the perceived stable gesture states, 
for example: “Your {which_hand} hand is/are {gesture}ing” or “You 
flipped or changed the object.” , where “{gesture}” is dynamically 
assigned based on the recognized stable gesture state, including 
hold, touch and point. The two feedback are combined when they 
are temporally close to reduce repetition, such as “I see your right 
hand is pointing.” 

Brief Object Descriptions. The brief description helps users 
quickly assess what the object is, whether it is of interest, and 
whether they want to learn more. Given a keyframe, TouchScribe 
first applies the Hands23 model [36] to obtain hand–object contact 
information, including which hand (or both) is in contact and a 

cropped image of the object (Figure 3b). When contact is detected, 
TouchScribe generates prompts such as “What is my {which_hand} 
hand touching?” with a cropped object image. This prompt is then 
passed to Moondream [15], a lightweight VLM that produces con-
cise descriptions with low latency. Example outputs include “Your 
right hand is touching a bottle of seasoning.” and “Both your hands 
are touching a laptop.” 

Detailed Object Descriptions. Detailed descriptions enable 
users to access fine-grained visual information about objects. Using 
the same cropped object image and hand–object contact data pro-
vided to Moondream [15], TouchScribe also supplies these inputs 
to GPT-4o [11] with a different prompt: “Can you describe the ob-
ject I am {gesture}ing with my {which_hand} hand in detail?” This 
produces descriptions such as “You are holding a white mug deco-
rated with colorful illustrations...” Although Moondream [15] and 
GPT-4o [11] perform inference in parallel, Moondream generates 
an initial high-level description first, followed by GPT-4o’s more 
detailed output due to differences in latency. 

Available Object Texts. TouchScribe reads aloud the available 
text on the object (e.g., expiration date, nutrition facts) once the user 
performs the hold+swipe-up gesture. Using the same cropped object 
image, TouchScribe submits a different prompt to GPT-4o [11]: “I 
am holding the object with my {which_hand} hand. Please describe 
the text line by line. If there is no text, can you just return ’no text 
on the {object name} your {which_hand} hand is {gesture}ing.” We 
employ GPT-4o [11] for its acceptable latency and accuracy of 
text recognition on low-resolution images compared to other text 
recognition models. This approach enables top-to-bottom reading 
of text on object surfaces, analogous to screen readers such as 
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iOS VoiceOver [19] and Android TalkBack [10]. If users trigger 
the gesture before texts are generated, TouchScribe responds: “Still 
processing the text, please try again later.” 

Comparative Descriptions. This feedback aims to support com-
parisons between objects with similar tactile features (e.g., shape 
and size), enabling users to better understand their visual simi-
larities and differences. When both hands hold or touch different 
objects, TouchScribe crops the corresponding object images using 
the Hands23 model [36] and prompts GPT-4o [11]: “Can you describe 
the object I am holding with my left hand and the one with my right 
hand? What are the differences or similarities between them?” This 
yields outputs, such as “Your left hand holds a red bottle, and your 
right hand holds a green one. Similarities: Both are Trader Joe’s... Dif-
ferences: color and texts are different ...” Also, TouchScribe detects 
when both hands hold or touch different parts of the same object, 
supporting users in understanding the object’s spatial layout and 
visual characteristics (e.g., surface graphics and text), building on 
prior work [41, 109]. In this case, TouchScribe prompts GPT-4o [11] 
with full image and instructions: “Can you describe the spatial and vi-
sual relationship between the points I am touching, and highlight any 
visual similarities or differences between them?” Example outputs in-
clude “Your hands touch adjacent areas around the bottle, with the 
left spanning the text... and the right spanning the graphics...” 

Color Labels. TouchScribe reports an object’s color when users 
hold it with one hand and point to it with the other. Then, Touch-
Scribe analyzes a small image region near the index fingertip. Based 
on the fingertip coordinates and hand side (left or right), the sys-
tem slightly offsets the cropped region (left/up for the right hand 
and right/up for the left hand) to exclude the finger itself. It then 
computes the region’s average RGB value and maps it to the nearest 
named color using the webcolors library [20]. 

User Query. Lastly, in line with G2, TouchScribe enables users 
to invoke a question-answering function via the voice command 
“Hey <wake word>” and pose queries. TouchScribe then submits the 
current video frame along with the user’s question to GPT-4o [11] 
and reads the generated response, similar to existing AI-enabled 
assistive VQA services such as BeMyAI [13] and SeeingAI [18]. 

3.7 Handling Responsiveness of Descriptions to 
Hand Interactions and Speech Query 

TouchScribe prioritizes descriptions and interrupts based on differ-
ent hand–object gestures. For example, invoking the VQA function 
interrupts any ongoing narration to address the query, after which 
hand gestures are ignored until the answer is fully delivered. In 
contrast, discrete gestures for specific visual information, such as 
hold+point for color labels or hold+swipe-up for object text, can also 
interrupt ongoing descriptions. 

4 Evaluation Methods 
We conducted a user study to qualitatively understand How do 
BLV participants experience and perceive TouchScribe? We 
then used the captured videos and interaction data from the study to 
conduct a technical evaluation for quantitative insights into What 
is the accuracy and latency of TouchScribe’s descriptions, 
in response to users’ hand-object interactions? We detail our 
methods and results below. 

Figure 4: The TouchScribe prototype setup included an ad-
justable neck mount with an attached smartphone. During 
the study, researchers adjusted the mount for each partici-
pant to ensure the camera was properly aimed at the table. 

4.1 Participants 
We recruited eight BLV participants (3 Male and 5 Female) using 
email lists for local accessibility organizations, prior contacts, and 
snowball sampling. Participants aged from 18 to 72 (Avg. 45.5) and 
described their visual impairment as blind (N=6) or having low 
vision (N=2). Most participants had prior experiences using remote 
sighted assistance and AI-enabled services, such as Orcam [16], 
BeMyEyes [2], BeMyAI [13], Aira [1], or SeeingAI [18] in their 
daily lives (Table 3). 

4.2 Procedure, Apparatus and Tasks 
The study consisted of two sessions: (i) a practice session, designed to 
familiarize participants with TouchScribe, and (ii) a task session, dur-
ing which participants completed a series of object understanding 
and selection tasks. Throughout the study, participants remained 
seated and interacted with the system using a neck-mounted smart-
phone (Figure 4). 

(i) Practice session. Participants were introduced to the hand 
gestures supported by TouchScribe, the corresponding feedback 
and descriptions provided by the system, and the procedure for 
invoking the VQA function. 

(ii) Task session. During the task session, participants com-
pleted four object understanding and selection tasks with increas-
ing levels of complexity, determined by the number of objects and 
the specificity of required information [35]. We describe each task 
below. 

(1) Understanding an object: Participants were given a cup 
featuring text and graphics on its surface (Table 2). The cup 
was placed on a table, and participants were instructed to 
use TouchScribe to obtain descriptions to understand its 
visual features. The task concluded when participants felt 
they had sufficiently understood the cup’s visual character-
istics and reported their observations to the experimenter. 
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Table 2: Setup and instructions for each scenario. These scenarios differed based on factors such as Visual Complexity in object 
understanding tasks marked as Low, and High in purple, and Information Specificity in blue (e.g., Specific vs. General). 

Image Scenario Setup Instruction to User Dimensions 

Understanding 
an object 

Participants were given a cup 
with colorful graphics and 
texts. 

You got a gift from your friend who just 
traveled back from a tourist spot. Can you 
use TouchScribe to understand this object? 
In terms of color, texts, and graphics. 

General 
Low 

Understanding 
and 
distinguishing 
two different 
spice bottles 

Participants were given two 
spice bottles from Trader Joe’s, 
including one chili lime 
seasoning with a red label and 
lid, and another oregano with 
a green label and lid. 

In the grocery store, you have two spice 
bottles with different labels, colors, and 
texts. Can you use TouchScribe to tell the 
differences and the similarities between 
them? 

General 
High 

Understanding 
and categorizing 
four spray bottles 

Participants were given two 
identical (from the brand 
*Everyone*, ruby grapefruit), 
and the other two were from 
the same brand (*Whole Foods 
365*) but had different scents 
(cucumber aloe and lavender). 

You just got the four spray bottles from a 
shared storage in your home. Can you use 
TouchScribe to categorize them based on 
their brands and scents? 

Specific 
Low 

Finding products 
with specific 
information 

Participants were given three 
carton of juices, including two 
apple juices (100 & 35 calories) 
and one lemonade (100 
calories), and three chocolate 
bars (55, 65, 70% of cocoa). 

You want to find some snacks in a shared 
pantry, specifically, the chocolate bars with 
the most cocoa and the apple juice with the 
fewest calories for your health. Can you use 
TouchScribe to help you find them? 

Specific 
High 

(2) Distinguishing two similar objects: Participants were 
provided with two seasoning bottles of identical shape but 
differing in labels, colors, and text. They were asked to 
identify both similarities and differences between the bot-
tles. The task concluded when participants felt they had 
sufficiently understood these attributes and reported their 
observations to the experimenter. 

(3) Sorting four similar objects: Participants were provided 
with four bottles of similar shape and size: two identical bot-
tles of the Everyone brand (grapefruit scent) and two bottles 

-from the Whole Foods 365 brand with different scents (cu
cumber aloe and lavender). They were asked to categorize 
the bottles by brand and scent. The task concluded when 
participants indicated they had completed the categoriza-
tion. 

(4) Selecting objects based on specified needs: Participants 
took part in a shared pantry scenario in which they were 
asked to locate items based on specific nutritional informa-
tion. The setup included six products: three chocolate bars 
with varying cocoa content (55%, 65%, and 70%) and three 
beverages, two apple juices with 100 and 180 calories, and 
one lemonade. Participants were instructed to identify the 
chocolate bar with the highest cocoa content and the apple 
juice with the fewest calories. The task concluded when 
participants indicated they had finished. 

For each task, objects were randomly placed on the table in front 
of participants rather than deliberately staged. This allowed the ob-
jects to be encountered naturally without excessive search time, as 
object finding was not the focus of our study. To support the collec-
tion of qualitative insights, participants were encouraged to think 

aloud and take their time exploring TouchScribe while completing 
the tasks. After completing all tasks, participants responded to a 
set of Likert-scale questions (Figure 5), completed the NASA-TLX 
form to assess cognitive load (Figure 6), and shared their overall 
experiences. 

The entire study lasted about one hour. Participants were com-
pensated for their transportation costs and an additional $25 for 
their participation. This study was approved by the Institutional 
Review Board (IRB) at our institution. 

4.3 Data Collection and Analysis 
For the user evaluation, we collected participants’ responses to a 
set of Likert-scale questions across multiple dimensions, includ-
ing perceived effectiveness, intuitiveness, usefulness, perceived 
accuracy and coverage of descriptions, and sense of agency when 
using TouchScribe (Figure 5). Participants also completed the NASA-
TLX questionnaire [47] to assess cognitive workload. Additional 
insights were obtained through open-ended questions in a semi-
structured interview, and the entire session was video recorded. 
Two researchers transcribed the interviews and analyzed the quali-
tative data using affinity diagramming. 

In addition, interactions with TouchScribe were logged for tech-
nical evaluation, including recognized gestures, generated descrip-
tions, and referenced frames (Section 6). To analyze these data, we 
conducted a round-table discussion and annotation session with 
four members of the research team. The researchers collaboratively 
reviewed the images and their corresponding descriptions, dividing 
the workload. Ambiguities or questions raised by any team member 
were resolved through group discussion. 
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Figure 5: Likert scale questions and aggregated responses of eight participants in our user study. This includes questions about 
coverage (M=6.5, SD=1.07), effectiveness (M=6, SD=0.76), intuitiveness of gestures (M=5.63, SD1.41), accuracy of descriptions 
(M=5.5, SD=1.6), usefulness (M=5.5, SD=1.69), and agency of using TouchScribe (M=5.13, SD=2.23). 

4.4 Limitation 
Our study was conducted in a controlled lab environment, with par-
ticipants seated throughout the sessions due to the study’s extended 
duration. We acknowledge that this setting may not fully reflect 
real-world conditions, where users may interact with cluttered 
environments or objects that exceed typical hand-grasp ranges. 
Although the neck-mounted smartphone was designed to approxi-
mate an egocentric perspective, it may be impractical for everyday 
use because of potential social acceptability concerns. Such issues 
could be mitigated through alternative form factors, such as smart 
glasses or more discreet wearable setups (e.g., a yarn lanyard). Ad-
ditionally, lighting conditions and camera angles were adjusted 
for each participant to accommodate the limitations of the cur-
rent hand landmark detection model. Despite these constraints, our 
primary goal was to demonstrate the feasibility of delivering live 
descriptions driven by hand-object interactions. We discuss these 
limitations and potential solutions in Section 7. 

5 User Evaluation Results 
In general, participants were able to use TouchScribe to complete 
a majority of the tasks. They commended the accuracy and cov-
erage of the information provided, as well as the intuitive way to 
access specific details, especially in comparison to the tools they 
currently use. However, participants also identified several limita-
tions, including latency in retrieving specific information due to the 
hierarchical feedback design, interruptions triggered by uninten-
tional hand movements, and a learning curve associated with the 
new interaction techniques. We elaborate on these findings below. 

5.1 Overall Task Completion 
Overall, participants successfully completed the majority of tasks 
(27 out of 32 tasks), typically within 5-10 minutes, and reported 
high perceived effectiveness in using TouchScribe to obtain specific 
information (M=6.0, SD=0.76). 

Specifically, for Task 1 – Understanding an object, participants 
achieved an 87.5% completion rate by correctly identifying the text 

and colors on the cup. Most used gestures, such as hold the cup 
and flip it around to access surface details, and use and hold+point 
to access its color. One exception was P1, who misidentified the 
interior color as black due to shading while pointing inside the cup. 

For Task 2 – Distinguishing two similar objects, all participants 
successfully identified differences in brand names, spice labels, and 
bottle colors. Common strategies we observed included holding 
both bottles side-by-side for comparative descriptions or examining 
each bottle individually at a time to verify visual details. 

Similarly, in Task 3 – Sorting four similar objects, participants 
reached a 75% completion rate. Most participants distinguished 
the bottles using both color labels and visual descriptions, but 
some struggled with reading text on curved surfaces, leading to 
hallucinated or incomplete descriptions. This caused confusion for 
P2 and P6, who did not complete the task. 

In Task 4 – Selecting objects with specified needs, the completion 
rate was 75%. All participants successfully identified the chocolate 
bar with the highest cocoa content, but some encountered difficul-
ties with the juice selection. For example, P1 was unable to locate 
the side with the calorie label and gave up, while P3 misremembered 
the calorie values despite receiving accurate descriptions. 

5.2 Perceived Accuracy, Completeness, and 
Latency of Descriptions 

Participants found that TouchScribe provided accurate and 
comprehensive descriptions; however, the density and prior-
itization of the information occasionally hindered efficient 
access. 

Overall, participants perceived descriptions to be accurate (M=5.5, 
SD=1.6) and complete (M=6.5, SD=1.07), such as “I can get descrip-
tions of bottle, texts on it, and colors too. Without a person or an 
app like Be My Eyes or Aira, you usually just get one of them and 
miss the full picture.” (P3) or “It’s detailed, descriptive, and reads 
ingredients verbatim per se” (P2). P1 also found the coverage of 
TouchScribe’s descriptions informative than his current apps: “If 
I use Seeing AI, I just held it there a minute until it starts reading 
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words. And as soon as I recognized a keyword, I knew what it was. 
Whereas with [TouchScribe], it is more. It doesn’t just read the 1st 
word that it comes to, but also recognizes the object like a box of 
cereal. It’s Cheerios, whereas Seeing AI is just gonna start reading 
randomly, heart health, 100 calories, and great with milk, and then it 
might say, Cheerios. [TouchScribe] is recognizing the object, instead 
of just saying words.” 

However, despite the comprehensive coverage of information, 
participants expressed mixed perceptions regarding the density 
and prioritization of the spoken content. For example, participants 
noted that hand-state feedback would be more appropriate as “a 
tutorial at the beginning to understand what it sees (P6),” rather than 
being presented regularly, which they found somewhat distracting. 
Also, P4 felt the transitions between descriptions were smooth, but 
suggested adding a brief pause in between for easier comprehension: 
“It was telling me more than what I needed to know at that moment. 
Maybe consider adding a second or two.” 

Furthermore, the hierarchical feedback design, progressing from 
brief to more detailed object descriptions, presented both advan-
tages and drawbacks. On the one hand, it could slow access to 
specific details, such as retrieving nutritional information in Task 
4, where a direct VQA might be more efficient. On the other hand, 
it helped contextualize information and maintain coherence across 
descriptions. For example, P3 found the hierarchical structure help-
ful for distinguishing between similar objects, noting in Task 3: 
“It said that all of them were hand sanitizers and then went down 
into more specific information, like this is orange blossom, and this 
is cucumber. It drills down to the more specific information, and it 
would be easy to tell which is which.” 

5.3 Perceived Agency, Gesture Intuitiveness, 
and Hand Constraints 

Participants generally found the gestures intuitive and felt in 
control when accessing information, though they also noted 
usability challenges related to hand movements. 

Participants rated the gestures as intuitive (M=5.63, SD=1.41) 
and reported a sense of control when using TouchScribe (M=5.13, 
SD=2.23). P2, who regularly used OrCam [16] for text reading, noted 
that hand-based interaction provided greater control: “The way you 
move your hand tells the system everything it needs to describe the 
object. For glasses, you have to chin down, use your nose, and go down 
towards the text to get everything in the block. This (TouchScribe) did 
me a replacement by just holding the object.” 

Similarly, P4 appreciated the immediacy of TouchScribe com-
pared to applications used in daily life, such as Be My AI [13]: “I 
just want immediate responses, because Be My AI will take a picture 
and tell you some basic things. And you need to go to chat for more 
information. [TouchScribe] is more immediate. You don’t have to 
go through a chat to do it. That’s just right there at the fingertips. 
Immediate. This would be a good app for people who do not have the 
patience to mess with chat.” 

Participants also found TouchScribe’s feedback on text detection 
and object flipping helpful for identifying items whose visual infor-
mation is distributed across multiple surfaces and not fully visible 
from a single viewpoint. This feature reminded participants of gro-
cery shopping experiences in which they needed to locate product 

barcodes to access digital information using existing assistive ap-
plications (e.g., Seeing AI [18]), suggesting that TouchScribe could 
provide practical benefits in such contexts. As noted by P3, “That’s 
difficult if you don’t know where the barcode is located. You need to 
turn the item in all kinds of ways to get the system to recognize that 
barcode. With this (TouchScribe), you don’t need to wait for locating 
the barcode. It just told what this is, and if there is text. So I knew to 
turn it to the other side.” 

During the study, TouchScribe occasionally misinterpreted idle 
hand movements or noise in posture detection as intentional in-
put, resulting in false positives and unintended interruptions (see 
Section 6.1). Participants noticed these disruptions but generally 
viewed the system’s sensitivity as a trade-off. As P7 said: “It restarted 
whenever I was even just moving a little bit... but checks and bal-
ances...because previous descriptions might go on for too long if it 
didn’t restart.” To adapt, some participants intentionally moved 
their hands out of the camera’s view to pause the system and then 
brought them back to reset the hierarchical feedback. We further dis-
cuss these limitations and propose future directions for improving 
gesture recognition and intent disambiguation in real-time settings 
in Section 7.2. 

Figure 6: NASA-TLX responses from the user study. Higher 
scores on the Performance dimension indicate better out-
comes, whereas lower scores on the remaining dimensions 
reflect better outcomes. 

5.4 Perceived Cognitive Load and Learning 
Curve 

Participants generally found TouchScribe usable and easy to 
learn, though they reported moderate cognitive effort and 
a noticeable learning curve related to gesture use and hand 
positioning. 

Although participants rated TouchScribe as useful (M=5.5, SD=1.69), 
the task design imposed noticeable but moderate cognitive demands 
(NASA-TLX: M=3.19, SD=2.45 out of 10), as participants needed to 
remember descriptions and associate them with the corresponding 
objects. As P3 noted, “I had to pay attention to try to remember what 
it was saying,” and P6 described the experience as “like a memory 
test.” Additionally, the walk-up-and-use study design introduced 
extra effort in learning the mappings between hand gestures and 
the description categories supported by TouchScribe. 
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On the other hand, participants generally perceived the gestures 
as common and easy to learn; however, the hold+swipe-up gesture 
for accessing text was considered less intuitive. As P1 noted, “I 
would not guess this unless you told me the inspiration was that (from 
VoiceOver)” . In addition, participants reported that positioning their 
hands within the camera frame required effort. P6 explained, “In 
theory, it (TouchScribe) is very quick to learn, which only took us 2 
minutes to go through all. In practice, it’s a learning process of getting 
the hand placement just right, because it’s a little bit finicky.” 

The combined effects of these challenges, including interrup-
tions from gesture recognition errors and delays introduced by 
hierarchical feedback, occasionally increased cognitive effort. How-
ever, compared to current practices, participants still perceived 
hand-based information access as convenient. As P1 remarked, “If 
you are at the store and you have to continually find ways to read 
different products, using hands would be easier and more convenient.” 
We discuss potential improvements in gesture customization and 
camera aiming to reduce these demands and enhance TouchScribe’s 
usability in Sections 7.1 and 7.3. 

6 Technical Evaluation Results 
Using data from the user study, we conducted a technical evalua-
tion of (i) the hand gesture recognition performance of our pipeline 
in live video stream, (ii) the accuracy of the system-generated de-
scriptions (Table 4), and (iii) the latency between gesture input and 
description output (Table 5). 

6.1 Performance of Hand Gesture and Gesture 
Recognition in Live Stream 

The goal of this evaluation was to assess the accuracy of our custom 
gesture recognition models in live video settings, beyond single-
image performance. Unlike conventional model evaluations, we 
considered the combined performance of the recognition models 
and the temporal smoothing function (Section 3.5). We reviewed 
gesture event logs and keyframes collected during the user study. 

6.1.1 Dataset and Analysis. During the user study, all keyframes 
and corresponding timestamps were automatically logged when-
ever a stable gesture state transition was detected. This enabled 
evaluation of both the gesture recognition models across sequences 
of frames and the effectiveness of the temporal smoothing algo-
rithm. Each keyframe was labeled with a gesture state, including 
hold, touch, point, and out of view. In total, we collected 1,994 ges-
ture instances, with 1,077 from the left hand and 917 from the right 
hand. 

Each keyframe was manually annotated with a ground-truth 
gesture label by the research team. Gesture classes were assigned 
based on the visible hand pose, while the out of view label was 
used when the wrist keypoint was not visible or when fingers 
were partially occluded by image boundaries, objects, or the other 
hand, conditions under which the Google MediaPipe hand landmark 
model [9] may fail. We evaluated model performance by comparing 
predicted gestures to these ground-truth labels and computing 
standard metrics, including accuracy, precision, recall, F1-score, 
and confusion matrices for both hands. 

6.1.2 Results. Among the 1,994 manually labeled instances, the 
model achieved an 𝐹1-score of 0.77. Among the gesture classes 
(Figure 7), the “hold” gesture achieved the highest performance 
(𝐹1 = 0.84, precision = 0.97, recall = 0.75). The “touch” gesture 
showed high recall (0.87) but lower precision (0.60), resulting in an 
𝐹1-score of 0.71. Similarly, the “out of view” class achieved an 𝐹1-
score of 0.74 (precision = 0.66, recall = 0.84). The “point” gesture, 
which had the fewest instances (𝑁 = 102), showed the lowest 
performance (𝐹1 = 0.44, precision = 0.36, recall = 0.56). 

Figure 7: Confusion matrix for hand event detection of both 
hands. 

False positives and negatives were observed under various con-
ditions (Figure 8). For example, holding objects often resulted in 
partial or full hand occlusion, such as when grasping a juice carton 
or a box of chocolate bars (Figure 8e, f), which led to incorrect hand 
landmark detection and both types of errors. Similar occlusions oc-
curred during discrete gestures like hold+point and hold+swipe-up. 
In addition, body movements and camera angles occasionally re-
sulted in motion blurs and hands or fingers being partially cropped 
or outside the frame (Figure 8g, h). We discuss these camera-related 
issues and potential solutions in Section 7.3, as well as broader 
improvements to our vision-only approach in Section 7.2. 

6.2 Latency of Delivered Descriptions 
Next, we measured the latency of descriptions to quantify how long 
users waited before feedback was read aloud. This included hand-
state feedback, brief and detailed object descriptions, comparative 
descriptions, color labels, and object texts. We measured end-to-
end latency as the time between detection of a new gesture and 
the onset of the corresponding spoken description. This measure-
ment encompassed the entire processing pipeline, including gesture 
recognition, retrieval of hand–object contact data and cropped im-
ages via Hands23 [36], prompt construction, response generation 
by VLMs (from Figure 3a to Figure 3c), and text-to-speech synthesis. 

6.2.1 Dataset and Analysis. In total, we analyzed all descriptions 
presented to participants during the study, comprising 1,143 in-
stances of hand-state feedback, 416 instances of brief object descrip-
tions generated by Moondream [15], 208 instances of detailed object 
descriptions generated by GPT-4o [11], 35 instances of comparative 
descriptions generated by GPT-4o, 529 instances of color labels, and 
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Figure 8: Example keyframes extracted by TouchScribe and the corresponding recognized gesture classes. (a–d) TouchScribe 
successfully identified gestures from both hands across varying camera viewpoints. (e) Recognition became challenging 
sometimes when hands were occluded, either by a larger object (e.g., a chocolate bar) or (f) by the user’s other hand during 
bimanual interactions. (g) Gestures could also be misclassified under certain camera angles or hand postures, such as when the 
finger in a pointing gesture appears not extended from the camera’s viewpoint. (h) Motion blur caused by camera or hand 
motion also influenced recognition reliability. 

143 instances of object texts. We measured the latency for each 
description type as the time between detecting a new gesture and 
sending the corresponding frame to VLMs, and the moment when 
the resulting description was delivered to the user. Below, we first 
report the processing time of individual components in the pipeline, 
followed by the end-to-end latency experienced by users. 

6.2.2 Results - latency of each model. Because the latency of each 
component contributes to the overall end-to-end delay, we report 
individual model latencies to illustrate their respective performance 
(Table 5). Under the hardware configuration described in Section 3.3, 
Hands23 exhibited an average latency of 0.87 seconds (SD=0.86), 
Moondream averaged 0.48 seconds (SD=0.62), and GPT-4o incurred 
the highest latency, with a mean of 3.07 seconds (SD=3.08). 

6.2.3 Results - end-to-end latency between gesture issued to descrip-
tions delivered. Under the hierarchical feedback design, brief object 
descriptions typically followed hand-state feedback, with detailed 
or comparative descriptions presented subsequently. In contrast, 
discrete gestures such as hold+point for color identification and 
hold+swipe-up for text retrieval allowed users to interrupt ongoing 
narration and quickly access targeted information (Section 3.7). 

In terms of end-to-end latency, hand-state feedback exhibited a 
mean delay of 0.56 seconds (SD=0.91), providing near-immediate 
confirmation of system perception. Among all feedback types, color 
labels triggered by the hold+point gesture had the lowest latency 
(M=0.09s, SD=0.17), while object text retrieval via hold+swipe-up 
averaged 0.57 seconds (SD = 0.58). 

In contrast, brief object descriptions generated by Moondream 
averaged 5.36 seconds (SD=3.42), followed by detailed object descrip-
tions from GPT-4o with a mean latency of 10.3 seconds (SD=4.02). 
Comparative descriptions from GPT-4o exhibited the highest latency, 
averaging 14.0 seconds (SD=3.06). Notably, these latency values ac-
count for the completion of prior descriptions, during which users 
were engaged with ongoing audio output rather than waiting idly. 

6.3 Accuracy of Object Descriptions from VLMs 
Lastly, we evaluated the accuracy of descriptions generated by 
VLMs. The goal was to determine whether the information pre-
sented to the user is accurate and relevant. For each referenced 
frame, we assessed whether TouchScribe correctly described the 

interacted object and whether any hallucinations appeared in the 
generated descriptions. 

6.3.1 Dataset and Analysis. In total, we collected 802 descriptions 
from the study, including 416 brief object descriptions from Moon-
dream, 143 object texts, 208 detailed object descriptions, and 35 com-
parative descriptions generated by GPT-4o. All instances were manu-
ally annotated for correctness. Descriptions were deemed incorrect 
if the system misidentified the interacted object or exhibited hallu-
cinations. 

6.3.2 Results. We evaluated the accuracy of 802 descriptions. Brief 
object descriptions generated by Moondream achieved an accuracy 
of 91.59% (381 out of 416). Detailed object descriptions generated 
by GPT-4o reached 93.27% accuracy (194 out of 208). Comparative 
descriptions generated by GPT-4o achieved 91.43% accuracy (32 out 
of 35). Overall, the descriptions demonstrated strong accuracy, with 
common errors including misidentifying a chocolate bar as a book, 
hallucinating a mouse when users rested their hands on the table, 
referencing the table instead of the held object, or failing to describe 
objects when they were occluded by hands. In contrast, object texts 
achieved lower accuracy at 67.83% (97 out of 143). This was primar-
ily due to challenges in recognizing text on the cylindrical bottles 
used in the study, where curvature often distorted or partially oc-
cluded the text. Participants frequently relied on trial-and-error 
repositioning to present readable text to the camera. We discuss 
potential mitigation strategies in Section 7.3. 

7 Discussion and Future Work 
We discuss our lessons learned and design implications for gener-
ating live object descriptions with hands as natural information 
cursors. 

7.1 Supporting Customization and Adaptation 
of Broader Gesture Set 

To our knowledge, TouchScribe is the first system to deliver live, 
rich descriptions driven by diverse hand–object interactions. Touch-
Scribe requires users to learn a predefined gesture set. This set, 
though informed by prior research on gesture nature and BLV fa-
miliarity (Section 3.2), resulted in perceived cognitive load by our 
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participants (Section 5.4). Nevertheless, qualitative feedback high-
lighted the utility of gestures and the enhanced sense of agency 
they afforded in accessing object information (Section 5.3). 

The current gesture set serves as a foundation that can be ex-
tended through user customization [50, 79, 90, 96, 103]. Such flex-
ibility is essential given the diversity of gesture preferences and 
contextual needs among BLV users. Social acceptability, in particu-
lar, could play a key role in shaping gesture choice. For example, 
mid-air gestures may be more suitable in private settings, where 
BLV users have been observed performing metaphoric gestures 
for tasks such as TV control, while sighted users tend to employ 
symbolic gestures [38]. In contrast, subtle micro-gestures or touch-
screen interactions are often preferred in public environments due 
to their discreet nature [79, 96]. 

Accordingly, while TouchScribe currently incorporates two micro-
gesture interactions (e.g., pointing to a held object for colors and 
swiping up for available texts) to demonstrate feasibility, the gesture 
vocabulary could be expanded by drawing on interaction techniques 
from existing assistive technologies, such as touchscreen screen 
readers. Examples include swiping left or right to navigate at the 
word level, using multi-finger swipes to access higher-level seman-
tic information, and familiar interactions such as pinch-to-zoom 
for localized text exploration. 

Future work could involve systematic elicitation studies with 
BLV users to capture gesture preferences across public and private 
contexts, as well as the development of adaptive AI companions 
capable of learning and personalizing gesture mappings over time. 

7.2 Design Implications for Low-Latency, 
Context-Aware Gesture Recognition 

Hand movements are inherently complex and dynamic, making 
them difficult to capture reliably using a camera stream alone. Par-
ticipants observed occasional interruptions in descriptions while 
using TouchScribe (Section 5.3), which were attributable to limita-
tions in our custom gesture recognition models (Section 6.1). Even 
when at rest, hands may unintentionally resemble supported ges-
tures. These erroneously detected gestures prompted TouchScribe 
to start generating new descriptions. 

Incorporating additional contextual cues could be essential to 
mitigate unintended gesture recognition by better distinguishing 
intentional from unintentional hand activities. For example, high-
level user activities can be inferred from full-body posture [24] and 
enriched through on-body sensors or wearable devices [25, 55, 68, 
77, 103], enabling the system to disregard situations in which hands 
are merely resting on objects or laps, or casually moving during 
locomotion. Furthermore, object contact and categories may be 
inferred from complementary sensing modalities, such as acoustic 
signals [52] and electromyography [39]. Incorporating diverse sens-
ing techniques could help reduce reliance on a vision-only pipeline, 
particularly susceptible to occlusion, and support cross-validation 
of gesture and object recognition across modalities (Section 6.1). 

Beyond sensor fusion, embedding common knowledge about 
everyday object use, typical hand postures, and users’ habitual in-
teraction patterns could further filter out irrelevant contexts, such 
as hands resting on tables or interacting with familiar items like 

keyboards, laptops, or mice. Additionally, inaccuracies in text recog-
nition arising from curved surfaces (Section 6.3) could be alleviated 
by recognizing and combining texts from multiple previously cap-
tured views of an object’s surface. 

Recent advances in VLMs, including improvements in both accu-
racy and latency and the emergence of lightweight models such as 
Gemini-Flash [8], suggest that system responsiveness will continue 
to improve. Reduced latency also allows greater temporal budget for 
incorporating these complementary sensing components into the 
description pipeline, which could further enhance overall system 
reliability and accuracy. 

7.3 Trade Offs between Camera Devices, 
Configurations and Practicality 

Camera-based ATs face several long-standing challenges [45, 49, 
61, 62, 73, 84, 94, 95], including maintaining target objects within 
the camera frame [45, 95], ensuring adequate coverage of essential 
visual content [49, 73], and addressing the social acceptability of 
camera setups [26, 57, 83]. While these considerations informed 
the design of TouchScribe (Sections 3.2 and 3.3), further work is 
needed to support practical deployment in real-world contexts. 

In TouchScribe, we employed a neck-mounted smartphone to 
free users’ hands and approximate an egocentric perspective. This 
design was inspired by the potential of emerging smart glasses, 
which at the time of development involved several trade-offs. Smart-
phones, by contrast, offered more accessible APIs than commercial 
smart glasses, greater flexibility in adjusting camera resolution and 
FoV (e.g., standard versus wide-angle), and sufficient battery life 
to support extended study sessions. Although this setup met our 
research needs, neck-mounted cameras differ from head-mounted 
configurations, requiring additional synchronization between head 
orientation and hand movements [46, 48]. Moreover, such setups 
may be uncomfortable for prolonged use or raise concerns regard-
ing social acceptability in everyday contexts [26, 31, 83], espe-
cially given varying privacy sensitivities among BLV users and 
bystanders. 

We selected a wide FoV (FoV; 120°) rather than a standard FoV 
(77°) to balance coverage and distortion. While standard FoV lenses 
introduce minimal distortion and support more reliable hand detec-
tion, their limited coverage makes it difficult to capture both hands 
and relevant objects simultaneously. Consequently, we opted for a 
wide-angle lens to increase coverage despite its greater distortion, 
which negatively affected hand detection performance (Section 6.1). 
Although TouchScribe provided feedback on perceived hand states, 
participants were often unaware of the camera’s intrinsic limita-
tions, as reflected in comments such as: “I’m wondering, does closer 
to the camera matter? (P2) and “I’m blind, so I don’t think about how 
the camera looks and stuff. So this is all good learning.” (P5). 

Building on this feedback, future research could explore a broader 
range of camera-mounting configurations (e.g., body-mounted or 
head-mounted) to better accommodate individual preferences, com-
fort, and social contexts. This may involve integrating additional 
sensors, such as IMUs in wrist- or head-mounted devices, and pro-
viding feedback to address head–hand misalignment, such as hap-
tic–audio guidance techniques for camera aiming [23, 53]. Adaptive 
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lens-selection strategies based on hand–camera distance and ob-
ject distribution could further improve coverage and accuracy; for 
example, switching to a wide FoV to cover multiple objects and to 
a standard FoV when focusing on a single object. 

7.4 Gesture-driven Descriptions Beyond 
Physical Reach 

TouchScribe delivers live visual descriptions driven by hand–object 
interactions within reach. Participants found this approach intuitive 
(Section 5.3) and more efficient than photo-capturing and chat-
based interactions in current assistive apps. While TouchScribe 
centers on holding and touching objects, this may not always be 
feasible due to social stigma, safety concerns, or personal comfort. 
We discuss circumstances that limit tactile engagement, and outline 
potential ways to support gesture-based interaction even when 
physical reach is constrained. 

Cultural taboos surrounding public touch, reinforced by norms 
such as the ubiquitous museum rule of “don’t touch”, can lead BLV 
individuals to internalize tactile exploration as socially inappropri-
ate [17]. Additionally, some BLV individuals may avoid touch due 
to negative prior experiences, such as being compelled to explore 
unfamiliar objects without preparation, consent, or agency [21, 74]. 
Beyond social stigma, tactile exploration can also present safety 
concerns, especially during public health crises such as the COVID-
19 pandemic [5, 6, 27]. These challenges are further compounded 
by physical constraints, as some objects of interest, such as items 
placed on high shelves in grocery stores, may be inaccessible. 

To extend gesture-driven descriptions beyond direct physical 
reach, future systems could build upon prior work on interaction 
proxies [69, 71, 108] and camera motion–enabled live description 
tools [18, 34] (Table 1). For example, after receiving an initial 
overview of a visual scene and confirming interest, users could 
employ subtle mid-air gestures [14, 55] (e.g., pinch) or touch ges-
tures on an interaction proxy (e.g., touchscreen) to navigate details 
with audio feedback. Such integrations would broaden access to 
visual environments both within and beyond physical reach. 

8 Conclusion 
In this work, we introduced TouchScribe, a system that augments 
hand-object interactions with automated, live visual descriptions. 
By leveraging egocentric hand gestures as information cursors, 
TouchScribe enables users to enrich their understanding of objects 
through diverse interaction patterns, such as holding or touching 
an object to receive hierarchical descriptions, comparing objects 
by holding them side by side, and swiping upward to read avail-
able text. Through a controlled user study and technical evaluation, 
we demonstrated that TouchScribe delivers reasonably accurate, 
timely, and informative feedback to support BLV users across a 
range of object exploration tasks. Participants perceived Touch-
Scribe to be easy to learn and intuitive, and felt in control when 
accessing object information. Finally, we discussed implications for 
real-world deployment, including supporting gesture and informa-
tion customization, improving gesture recognition and description 
accuracy through broader contextual awareness, considering di-
verse camera configurations and social acceptability, and extending 
hand-driven interaction beyond physical reach. 
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Table 3: Participant demographic information, referred to as P1 to P8. 
ID Age Gender Self-Reported Visual Ability Assistive App Use 
P1 41 Male Blind due to Retinitis Pigmentosa, left < 0.5 degree, de-

pends on lighting to identify the color of the object. 
SeeingAI, BeMyAI, BeMyEyes, Aira, 
Orcam, SoundScape, and VoiceVista 

P2 58 Female Right: blind. Left: Usable vision using a physical magni-
fier. 

SeeingAI, BeMyAI, BeMyEyes, Aira, 
and Orcam, 

P3 50 Female Blind, since birth. Light perception. SeeingAI, BeMyAI, BeMyEyes, Aira, 
Orcam and BlindSquare 

P4 73 Female Blind, since birth. Light perception. SeeingAI, BeMyAI, BeMyEyes, and 
Aira 

P5 41 Male Blind, since birth. Light perception. SeeingAI, BeMyAI, BeMyEyes, and 
SoundScape 

P6 60 Female Blind, since birth. BeMyAI and BeMyEyes 
P7 24 Female Blind, acquired since 13. None 
P8 18 Male Low vision due to Stargardt. Right: 20/1000, Left: 20/600, 

Light to Moderate color blindness. 
SeeingAI 

Table 4: Accuracy of object descriptions generated by VLMs. 

Description Type Instances Correct Accuracy (%) 

Object labels (Moondream) 416 381 91.59 
Detailed descriptions (GPT-4o) 208 194 93.27 
Comparative descriptions (GPT-4o) 35 32 91.43 
Object texts (GPT-4o) 143 97 67.83 

Table 5: Latency results for description generation, reported as mean and standard deviation (SD) in seconds. 

Description Type / Model Instances Avg. Latency (s) SD (s) 

Model Processing Latency 

Hands23 [36] – 0.87 0.86 
Moondream [15] – 0.48 0.62 
GPT-4o [11] – 3.07 3.08 

End-to-End Latency (Gesture Identified → Description Spoken) 

Hand state descriptions 1143 0.561 0.91 
Object labels (Moondream) 416 5.36 3.42 
Detailed descriptions (GPT-4o) 208 10.3 4.02 
Comparative descriptions (GPT-4o) 35 14.0 3.06 
Object texts (GPT-4o) 143 0.57 0.58 
Color labels 529 0.087 0.169 
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